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Abstract This paper describes a novel method for shape
representation and robust image segmentation. The pro-
posed method combines two well known methodologies,
namely, statistical shape models and active contours im-
plemented in level set framework. The shape detection is
achieved by maximizing a posterior function that consists of
a prior shape probability model and image likelihood func-
tion conditioned on shapes. The statistical shape model is
built as a result of a learning process based on nonparamet-
ric probability estimation in a PCA reduced feature space
formed by the Legendre moments of training silhouette im-
ages. A greedy strategy is applied to optimize the proposed
cost function by iteratively evolving an implicit active con-
tour in the image space and subsequent constrained opti-
mization of the evolved shape in the reduced shape feature
space. Experimental results presented in the paper demon-
strate that the proposed method, contrary to many other ac-
tive contour segmentation methods, is highly resilient to se-
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vere random and structural noise that could be present in the
data.
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Segmentation - Shape detection

1 Introduction

Originally proposed in [13], active contour models have
achieved enormous success in image segmentation. The ba-
sic idea of active contour is to iteratively evolve an initial
curve towards the boundaries of target objects. Classical
curve evolution is normally driven by a combination of in-
ternal forces, determined by the geometry of the evolving
curve, and external forces induced from an image. A seg-
mentation method using active contour is usually based on
minimizing a functional defined in such a way that for curve
close to the target object boundary it has small value.

Introduction of a prior shape constraint into the image
segmentation functional has recently become the focus of
intensive research [6, 7, 12, 14, 16, 19, 24]. The early work
on this problem has been done by Cootes et al. [4]. Their
method is based on principal component analysis (PCA) cal-
culated for landmarks selected for a training set of shapes
which are assumed to be representatives of the shape vari-
ations. The method is implemented in the parametric active
contour framework, with results strongly depending on the
quality of the selected landmarks.

Leventon et al. [17] considered introduction of prior
shape information using level set based representation,
where landmarks are replaced by signed distance functions
calculated for the contours in the training data set, pro-
viding hence an intrinsic and parametrization free shape
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model. However, it was demonstrated that, linear combina-
tions of signed distance functions do not necessarily result
in a signed distance function, and therefore possibly com-
promise the quality of the solution. Furthermore, all these
methods effectively assume that the shape prior has a Gaus-
sian distribution. As a result, these methods cannot handle
multi-modal shape distributions and thus are restricted to the
segmentation of target objects with limited shape variabili-
ties.

Instead of using evolution of active contour to search op-
timum in the image space, Tsai et al. [25] proposed a method
to directly search solution in the shape space which is built
by the signed distance functions of aligned training images
and reduced by PCA. In their paper, a few cost functions are
proposed and their derivatives with respect to eigen-shape
weights and to pose parameters are given, so that the steep-
est descent algorithm can be applied. In [10], Fussenegger et
al. apply a robust and incremental PCA algorithm on bi-
nary training masks of the object(s) to define an active shape
model which is then “embedded” in a level set implemen-
tation. Segmentation (or tracking) is computed using pre-
trained shape model, then PCA representation is updated
using this result in order to improve next iteration of seg-
mentation process. Although this self-improving “looping
process” between the image space and the shape space is in-
teresting, PCA of binary training masks requires that these
training examples are aligned before learning the implicit
shape model. The major limitation of all these methods is
the implicit assumption of uniform distribution in the shape
space.

Recently, it has been proposed to construct nonparamet-
ric shape prior by extending the Parzen density estimator to
the space of shapes. For instance, in [5, 20-22], authors pro-
posed a nonlinear statistical shape model for level set seg-
mentation which can be efficiently implemented. Given a set
of training shapes, they performed kernel density estimation
in the low dimensional subspace. In this way, they are able to
combine an accurate model of the statistical shape distribu-
tion with efficient optimization in a finite-dimensional sub-
space. In a Bayesian inference framework, they integrated
the nonlinear shape model with a nonparametric intensity
model and a set of pose parameters which are estimated in a
more direct data-driven manner than in previously proposed
level set methods. Kim et al. [14] proposed a nonparametric
shape prior model for image segmentation problems. Given
example training shapes, they estimate the underlying shape
distribution by extending a Parzen density estimator to the
space of shapes. Such density estimates are expressed in
terms of distances between shapes. The learned shape prior
distribution is then incorporated into a maximum a posteriori
estimation framework which is solved using active contours.

Recently, Foulonneau et al. [9] proposed an alternative
approach for shape prior integration within the framework
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of parametric snakes. They combined a compact, parametric
representation of shapes within curve evolution theory. More
specifically, they proposed to define a geometric shape
prior based on a description of the target object shape us-
ing Legendre moments. A new shape energy term, defined
as the distance between moments calculated for the evolv-
ing active contour and the moments calculated for a fixed
reference shape prior, is proposed and derived in the math-
ematical framework of [1] in order to obtain the evolution
equation. Initially, the method was designed for a single ref-
erence shape prior [8], but in the most recent version is able
to take into account multi-reference shape priors. As a result,
the authors have defined a new efficient method for region-
based active contours integrating static shape prior informa-
tion. Nevertheless, one of the main drawbacks of such an
approach lies in its strong dependence to the shape alpha-
bet used as reference. Indeed, as stated by the authors them-
selves in [9], this method is more related to template match-
ing than to shape learning.

Inspired by the aforementioned results and especially by
the approach proposed by Foulonneau et al., the method pro-
posed in this paper optimizes, within the level sets frame-
work, model consisting of a prior shape probability model
and image likelihood function conditioned on shapes. The
statistical shape model results from a learning process based
on nonparametric estimation of a prior probability, in a low
dimensional shape space of Legendre moments built from
training silhouette images. Such approach tends to combine
most of the advantages of the aforementioned methods, that
is to say, it can handle multi-modal shape distributions, pre-
serve a consistent framework for shape modeling and is free
from any explicit shape distribution model.

The structure of this paper is as follows: Section 2 de-
scribes the proposed image segmentation framework. More
specifically in Sect. 2.1 a shape representation using Leg-
endre moments is introduced; The statistical shape model
constructed in the space of the Legendre moments is ex-
plained in Sect. 2.2; The level set active contour model used
in the proposed method is briefly explained in Sect. 2.3; Sec-
tion 2.4 recasts the energy minimization problem in the gen-
eral maximum a posteriori (MAP) framework, whereas in
Sect. 2.5 the proposed strategy for energy minimization is
explained in detail; Section 3 demonstrates the performance
of the proposed method on binary silhouette and gray scale
images, emphasising the resilience of the proposed method
with respect to severe random and structural noise present in
the image; Finally the conclusions are given in Sect. 4.

2 Segmentation Framework

The proposed segmentation framework can be seen as con-
strained contour evolution, with the evolution driven by an
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iterative optimization of the posterior probability model that
combines a prior shape probability and an image likelihood
function linked with a coupling prior imposing constraints
on the contour evolution in the image domain. The method
can be implemented with any combination of the shape de-
scriptors and dimensionality reduction techniques as long as
the shape reconstruction is possible from the selected low
dimensional representation. Although for the clarity of the
presentation and due to analysis in the experimental section
comparing the proposed method against [9], Legendre mo-
ments are used in the paper, other shape descriptors such as
Zernike moments [23] could be equally used.

In this section all the elements of the proposed model
along with the proposed optimization procedure are de-
scribed in detail.

2.1 Shape Representation Using Legendre Moments

The method proposed in this paper can utilize any shape de-
scriptor as long as it enables shape reconstruction [18, 23].
However, in order to simplify description of the method
and comparison with other approaches [2, 9] shapes are
encoded, as in [9], by central-normalized Legendre mo-
ments A = {Apy, p +q < N,} of order N, where p and
g are non-negative integers, and therefore A € RV/ with
Ny=(No+1)(N,+2)/2.

The central-normalized Legendre moments are attractive
for shape representation as they can be used for objects in
arbitrary dimensional spaces and having different topology.
They are also invariant to shape scaling and translation and
provide compact shape representation where a tradeoff be-
tween feature space dimension and shape representation ac-
curacy can be simply controlled by the single parameter N,,.
Figure 1 shows an example of shape reconstruction when
different values of N, are used.

For a given shape 2 the moments are defined by:

1
kpqz—/ Lpy(x,y,82)dxdy (€))]
121 Je

where the 2D central-normalized Legendre polynomials
L, are the tensor product of two 1D central-normalized

vathd el

Fig. 1 Images reconstructed from the Legendre moments with differ-
ent orders. From left to right: original image and reconstruction images
with orders N, =5, 20, 40

Legendre polynomials L, and L,:

Loy =L, (=Y, (2= )
pg x> Y, - =P |_Q|1/2 q |_Q|1/2

with Legendre polynomials defined on the interval [—1, 1]
as:

2n+1 1 d*
2 2'pldxn

Ly(x) = [(x* — 1)"] 3)

The area |§2| and the center of gravity coordinates (X, y) are
calculated from:

|.Q|=/ dxdy, “)
2

1
i:—/ xdxdy,
12| Je

The Legendre polynomials form the orthonormal basis:

_ 1/
y=-—= [ ydxdy (5)
121 Je

1
/ Lo (O L () dx = Syum ©)
-1

and therefore are very effective for shape representation. Al-
though the central-normalized Legendre moments provide
only scale and translation invariance, the theory presented
in this section can be further extended to provide similar-
ity or affine transformation invariance of the moments. Such
extension has been well exposed in [9].

In the following sections the scale and translation invari-
ant moments are used but the method would remain the same
if similarity or affine invariant moments were used instead.

2.2 Statistical Shape Model of Legendre Moments

In the method proposed here the prior shape constraint is in-
troduced into the segmentation process in the form of proba-
bility density function defined on the low dimensional shape
space [4] and estimated using Parzen window method. The
shape space is constructed using PCA method on a train-
ing set consisting of Ny binary silhouette images with fore-
ground and background represented respectively by ones
and zeros. The training data can be obtained from previ-
ously segmented images or generated from computer mod-
els of the objects of interest. In the first instance the central-
normalized Legendre moments {Xi}fvil are calculated for
the shapes {.Qi}f.\gl from the training database. Following
the methodology proposed in [4] the mean vector A and the
Ny x Ny covariance matrix Q are estimated using:

>
I

Ai )

-

=|-

i=1

=

1 s
Q=—

S.l

i =) =7 ®)
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Subsequently the Ny x N, projection matrix P is formed
by the eigenvectors of the covariance matrix Q that corre-
spond to the largest No (N < min{Ny, Nr}) eigenvalues.
The projection of feature vectors {k[}fvz“l onto the shape
space, spanned by the selected eigenvectors, forms the fea-

ture vectors {A,,; }lN;l:
=PI —)) ©)

The density estimation P(A,), with A, defined in the shape
space, is performed up to a scale, using A, ; as samples from
the population of shapes and with the isotropic Gaussian
function as the Parzen window:

Ny
PA) =Y NOiknio?) (10)

i=1
where N'(A,; A.i, 02) = exp(—[|A, — A,.il|*/20?)
2.3 Level Set Active Contour Model

Introduced in the previous section, density function P(X,)
is defined on the shape space of Legendre moments and rep-
resents a prior knowledge learned from the training shape
examples.

To detect and segment shapes present in an observed im-
age, a mechanism for taking into consideration the evidence
about shape needs to be included. Due to the way the final
objective function is optimized, any energy-based level-set
contour evolution schemes can be used. In this paper, it is
proposed to consider for this purpose active contours imple-
mented in the level set framework. The region competition
scheme proposed by [2] will be used for the illustration pur-
poses. In this case, it is assumed that the image / is formed
by regions of approximatively constant intensity values and
the segmentation is defined as energy minimization prob-
lem, with the energy given by:

Ecy(82, ng, pocll) :/ (I — pne)? dxdy
Q

+[ (I — poe)dxdy + ]98]
QC
(11)

where £2¢ represents the complement of §2 in the image do-
main and |02]| represents the length of the boundary 92 of
the region £2. The above defined energy minimization prob-
lem can be equivalently expressed as maximization of the
likelihood function:

P(I1$2) ocexp(—=Ecv(£2, . peell)) (12)

where P ([|£2) could also be interpreted as a probability of
observing image [ when shape §2 is assumed to be present

@ Springer

in the image. Introducing level set (embedding) function ¢
such that the £2 can be expressed in terms of ¢ as £2 =
{(x,y) 1 (x,y) >0}, as well as 2¢ = {(x, y) : ¢ (x, y) < 0}
and 082 = {(x, y) : ¢(x, y) = 0}, the foregoing functional is
equivalent to

Eeo(9, ng, pgell) = / (I — e)*H(¢p)dxdy
+ / (I — poo)®(1 — H($)) dxdy

+V/IVH(¢)|dxdy 13)

with H representing Heaviside function. Calculating Gateaux
derivative [1] it can be shown that such energy function is
minimized by function ¢ given as a solution of the following
PDE equation

il
2 = (U~ g~ (4~ o)) 99l
+yV (E) V| (14)
V]

with uo = [, Idxdy and pge = [ I dxdy representing
respectively the average intensities inside and outside the
evolving curve.

2.4 MAP Framework

Introduced in the previous two sections, distributions repre-
senting shape prior information and image intensity can be
combined using Bayes rule:

P |I) o< P(Ar)P(IIX) s)

where P(A,) and P(I|A,) represent respectively shape and
intensity based information. In [26] it was proposed to op-
timize P(A.|I) by restricting the shape evolution in the
estimated shape space, by imposing following constraint:
P|\) = P(I182)|e=0@,).- As maximizing P(A.|I) is
equivalent to minimizing — In(P(A,|1)), Zhang et al. [26]
suggested minimizing an energy function:

E(’“r) = Eprior ()tr) + Eimage(xr) (16)
where the shape prior term is defined as:
Ny
Eprior()vr) =—In (ZNOw;}vr,i,Uz)) (17
i=1

and is built based on the shape samples §2; as explained in
Sect. 2.2. The image term is defined as:

Eimage(hr) = Ecy(82, o, noclDlo=2n,) (18)



J Math Imaging Vis (2013) 47:35-47

39

where optimization of E., is constraint to shapes §2 from
the estimated shape space 2 = £2(A,) (£2(A;) denotes a
shape from the shape space represented by the Legendre mo-
ments A = PA, + ):).

As it was indicated in [26] such approach provides a very
robust segmentation. Unfortunately the solution which min-
imizes E(A,) belongs to the shape space and as such may
not accurately represent object of interest. To resolve this
the Eq. (15) can be redefined as:

P (82,1 |1) o P(A,) P(S2[A) P(I]82, X)) 19)

Equation (19) is now optimized jointly with respect to shape
£2 defined in the image space and vector A, defined in the
shape space. The coupling between these two is achieved by
P (£2]|A,) defined as:

P(21A,) x exp(—Ec(2]A,) (20)
with:
E(QI) =a / (H(§) — H($,)) dxdy @1

where « is a weighting factor defining the strength of cou-
pling between §2 and ¢, is a signed distance function rep-
resenting the shape defined by the A, in the image domain.
The overall energy to be minimized is now given by:

E($2,1) = Eprior (Ar) + Eimage(ga Ar) (22)

with the image energy:

Eimage(ga Ar) =Ecy(2, ne, noe|D| + Ec($2]A,) (23)

It can be shown that the corresponding PDE describing the
solution of this new image energy is given by:

ol
20 = (U - g~ 1 ) 199l
vg

IVl

The details of the optimization procedure for energy
E($2, A,) are given in the next section.

+a(2H(¢r)—1)|V¢>I+VV( >|V¢>| (24)

2.5 Optimization

In the implementation of the proposed method the energy
given in Eq. (22) is minimized using a greedy method where
each of the two energy components E ;o and Ejpqge is
minimized in turn. The optimization of the image based en-
ergy Eimage 18 implemented through evolution of the level
set ¢ defined by Eq. (24) with A, fixed. Subsequently the
E prior is minimized in the shape space with respect to the
A,. In this approach active contour evolution can be inter-
preted as a method for transferring the evidence about the

shape present in the image into the shape space where it is
combined with the shape information derived from the train-
ing shape samples.

The overall optimization procedure is summarized in the
following steps:

e Projection of the current shape £2% into the shape space:
2® - ® 25)

where Xﬁk) =PpT (X(k) — 1), and the central-normalized
Legendre moments in vector A are calculated using:

w_ 1
pq |Q(k)| o®

Ly (x, v, .Q(k)) dxdy (26)

where 2% comes from the previous algorithm iteration;
e Shape space vector update:

A® 27)

This step reduces the value of E, ;o by moving Xik) in
the steepest descent direction:

A0 b _ g IEprior (28)
: " Ny [y,
where
N,
oE |
” =75 Zj wi (A = Api) (29)
with
Ny A, o2
wi = — Ar;Ari,0%) - (30)
Zk;I Ny Ak, 0)
e Shape reconstruction from Legendre moments:
k k
AE 5 r® (31)
where shape £2’® is reconstructed using:
Q')
P+q=N,
. k k
=1{(x,y): Z A’ng)qu (x,y,.Q( )) >0.5
(32)

with the Legendre moments A/,E’;) in vector ’® calculated

from the shape space vector k/r(k) using: A'® = Pki(k) +1
e Evolution of £2'® according to Eq. (24):
' - QU+ (33)

shape £2’®  is a shape represented in the shape space and
Q®+D s the result of shape evolution in the image do-
main;
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These steps are iterated until no shape change occurs in two
consecutive iterations: 2*+D = Q®),

The proposed strategy provides the maximum flexibil-
ity by making the optimizations in image space and shape
space two independent processes bridged by shape projec-
tion and reconstruction. Thus, changing the curve evolution
model in the image space or probability estimation model in
the shape space will not affect other procedures. Although
Legendre moments and PCA are selected to build the shape
space in this paper, other shape descriptors and dimension-
ality reduction techniques can be easily ‘plugged’ into the
optimization framework as long as the shape reconstruction
from the shape space is possible. It should be pointed out
that, unlike derivative based optimization methods such as
[8] and [9], the shape descriptors need not be differentiable
in the proposed method.

To guarantee convergence of the algorithm the parameter
« in equation Eq. (24) should be non-decreasing function
of the iteration index. In that case the convergence is guar-
anteed as for large enough value of « the algorithm, if not
terminated beforehand, is equivalent to the steepest descent
in the reduced shape space. In practical implementation the
value of « is periodically increased after predefined number
of iterations lapses. With this in mind the proposed algo-
rithm can be interpreted as a mode seeking shape detection
procedure. With small value of « the algorithm can rela-
tively easily make long “unconstrained” jumps in the shape
space following the shape evidence in the image domain.
With the gradually increasing value of « the algorithm will
be restricted to make gradually smaller steps to maintain
similarity of the evolving shape in the image domain to the
current shape defined in the shape space. It should be noted
that in the practical experiments the algorithm converged in
just a few iterations without increasing « for the vast major-
ity of cases. To further improve segmentation results after
the algorithm terminates the image energy can be minimized
independently through the contour propagation defined by
formula Eq. (24). In this case the value of the parameter «
should correspond to the level of noise present in the image,
with small values of « corresponding to low level of noise.
This is further explained in the experimental section.

3 Experimental Results

To evaluate the proposed method, experiments were carried
out using binary silhouette and real gray scale images. The
main reason behind using the silhouette images was to inves-
tigate robustness of the proposed technique against severe
random and structural noise present in data. The segmenta-
tion of such images without any noise is straightforward, as
it could be achieved by simple thresholding, proving ready
ground truth data. Additionally any incorrect segmentation

@ Springer

of the noisy images can be directly associated with the noise
rather than with a specific “non-optimal” type of image in-
tensity descriptor used to compute the external energy in the
active contour model. As it was explained in Sect. 2 the
proposed method can be used with any contour evolution
equation and as such can be used with colour or even tensor
valued data. Here for illustration purposes results showing
segmentation of real gray scale images were included.

3.1 Silhouette Data

A first set of experiments were carried out using a chicken
image set consisting of 20 binary silhouette images of dif-
ferent shapes, orientations and sizes from the MPEG7 CE
shape-1 Part B database [15]. The first 19 of them were used
as training shapes for building the statistical prior model
and the remaining image was used for testing (see Fig. 2).
The diversity of the training shapes can be clearly noted—
rotations in the images were not removed on purpose to test
robustness of the proposed method against large shape vari-
ability.

Shape variations represented by the sample points along
the three most dominant principal axes in the feature space
are shown in Fig. 3, from which it can be observed that the
three principal axes respectively capture the shape variabil-
ities of rotation (vertical position v.s. horizontal position),
trend (V-shape v.s. L-shape) and reflection (right headed v.s.
left headed).

The selected chicken’s silhouette image (Fig. 4(a)) was
corrupted by a combination of two different types of noise,
namely, the additive white Gaussian noise for the simulation
of a sensor noise and a structural noise simulating occlusions
and defects.

The test image with Gaussian noise is shown in Fig. 4(b)
where the noise level is so high that even with a prior knowl-
edge of the shape it is difficult to find the original silhouette

i

o

>

vl fadh

¥y

Fig. 2 The chicken image set
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Fig. 3 PCA results on the chicken images. From fop to bottom, the
three rows represent the shapes reconstructed from the Legendre mo-
ments sampled along the three most dominant principal axes (eigen-
vectors) in the feature space. From left to right, each column corre-
sponds to different magnitude (—2, —1, 0, 1, 2 times the squared root
of the eigenvalue associated with the corresponding eigenvector) of
shape variations from the mean shape

Fig. 4 Test images, (a) original binary silhouette image with initial
active contour used in the experiments, shown as a circle at the cen-
ter of the image, (b) test image corrupted by Gaussian noise, (c) test
image with structural noise, (d) test image with hybrid (Gaussian and
structural) noise

in the noisy image. For the structural noise (Fig. 4(c)), hard
alterations are made on the original image in order to em-
phasis the need for shape constraints. Finally, the last test
image is corrupted by both Gaussian and structural noise
(Fig. 4(d)).

All the experimental results shown in Fig. 5 were based
on the test images as shown in Fig. 4 and with the same pa-
rameters N, = 40 and N, = 10, used to calculate Legendre
moments and the shape space.

As it can be seen in Fig. 5 for each corrupted image, the
proposed method makes a satisfactory shape segmentation
even though this shape was not included in the database of
the shapes used to calculate the shape space. Figure 5(d)

Fig.5 Results obtained by the proposed method for: (a) noise-free test
image; (b) test image corrupted by the Gaussian noise; (c) test image
with the structural noise; (d) test image corrupted by the hybrid noise.
Whereas the green line represents the solutions defined in the shape
space corresponding to a = oo in the final algorithm iteration, the red
line shows solutions obtained for o chosen based on the level of noise
present in the images, e.g. for noise free image shown in (a) @ =0

10" iter.

4tP iter.

Fig. 6 Intermediate contour evolution in the shape space obtained for
the result shown in Fig. 5(d)

shows the final segmentation results for the image corrupted
by both Gaussian and structural noise. It can be seen that in
the solution, following Eq. (15), defined in the shape space
(shown in green) detailed shape variabilities are normally
missing. This is most prominent in the noiseless image.
Whereas the solution defined in the image space, Eq. (19),
the corresponding §2 (shown in red), closely follows edges
of the silhouette. For the noisy images, particularly with the
severe random noise, quality of the segmentation in the im-
age domain slightly deteriorates. This can be understood as
manifestation a basic tradeoff between fidelity and robust-
ness to noise. In the proposed method this tradeoff is con-
trolled by the o parameter, Eq. (24), where small value of
a encourages fidelity whereas larger values improve robust-
ness of the solution. Samples of the evolving shape for this
specific test image are shown in Fig. 6.
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0.2 0.3

Fig.7 Shape evolution trajectories shown in the feature space spanned
by the first two principal axes

Figure 7 shows the shape evolution trajectories in the fea-
ture space, spanned by the first two principal axes, corre-
sponding to the results shown in Fig. 5. The iso-contours
shown in this figure illustrate the probability density func-
tion (pdf) estimated using isotropic Gaussian function as the
Parzen window with o2 = 0.02. The dots represent the pro-
jections of the 19 training shapes.

The three curves in Fig. 7, shown in solid, dash and dotted
lines, respectively demonstrate the trajectories formed by
the optimization processes of the proposed method based on
the test images with Gaussian, structural and hybrid noise.
As the same initial circular shape was used for all three test
images all the trajectories start at the same point marked by
a square. All trajectories converge to points scattered nearby
the dot representing the shape included in the image shown
in the first row and third column in Fig. 2, which is the most
similar to the shape present in the test images. Focusing on
the dotted trajectory within the feature space, one can match
trajectory steps with the intermediate results shown in Fig. 6.
The fact that the convergent points are close but not exactly
on the dot indicates that the proposed approach is not a tem-
plate matching. Although the method is designed to search
for shapes similar to shapes seen during the training process
it can recover some unseen shape variations.

To assess the performance of the proposed method, the
results obtained using proposed method were compared
against the segmentation results generated by the Chan-Vese
model (without shape constraint) shown in Fig. 8 and with
the result obtained using the multi-reference method pro-
posed in [9] shown in Fig. 9.

The segmentation result for the additive Gaussian noise
from the Chan-Vese model, which is well-known for its ro-
bustness to Gaussian noise, is shown in Fig. 8(b). Inaccurate
as it is, the result does provide some reasonable indications
about the shape and position of the desired object, shown as

@ Springer

Fig. 8 Segmentation results obtained for the corresponding test im-
ages from Fig. 4 using Chan-Vese model

Fig. 9 Segmentation results obtained for the corresponding test im-
ages from Fig. 4 using multi-reference method proposed in [9]

a dash line, which is one of the major reasons why region-
based active contour approaches such as Chan-Vese model
are good choices for the image term in the proposed method.
Figure 9(b) shows the segmentation result using the multi-
reference method from [9], where all the 20 training shapes
were used as references. The result demonstrates a dilemma
for the methods with ‘soft’ shape constraints—How to or
is it possible to select an appropriate weight to balance the
image term and shape term? For a noisy image like this,
a strong image force could lead to the inaccurate result as
shown in Fig. 8(b), whereas a strong shape force could re-
sult in the convergence to a wrong shape at a wrong loca-
tion due to the lack of guidance from image force. In this
case, a range of different weights were tried, but none of
them converged to the right result. Much better result was
achieved using the proposed method as shown in Fig. 5(b).
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Fig. 10 Results for a second set of experiments using different
chicken’s silhouette image. This specific image has been removed from
the database before building the shape space subsequently used in the
iterations. The segmentation results are shown as red solid curves,
whereas the desired results are shown as green dash lines. (a) Origi-
nal noise-free test image with initial active contour shown as a circle
at the center of the image; (b) Segmentation of the test image with
severe Gaussian noise using Chan-Vese method; (¢) Segmentation of

As expected, the resulting shape living in the reduced feature
space tends to have more regular appearance.

For images with a large amount of structural noise Chan-
Vese model without shape constraint completely failed, as
shown in Fig. 8(c—d), by following the false structures. Al-
though increasing the weight associated with the length term
(y in Eq. (11)) can avoid some of the false structures, it
cannot properly locate the desired shape. Again, the multi-
reference method failed to converge to the right result as ev-
ident from Fig. 9(c—d).

Figure 10 collocates the results obtained for a different
test images generated from the different chicken silhouette.
As before the selected image was removed from the training
set prior to construction of the shape space.

the same test image as in (b) using the multi-reference method pro-
posed in [9]; (d) Segmentation of the same test image as in (b) using
the proposed method; (e) Test image with structural noise; (f) Segmen-
tation of (e) using Chan-Vese model; (g) Segmentation of (e) using the
multi-reference method; (h) Segmentation of (e) using the proposed
method; (i) Test image with hybrid noise; (j) Segmentation of (i) using
Chan-Vese method; (k) Segmentation of (i) using the multi-reference
method; (1) Segmentation of (i) using the proposed method

Once again, the proposed method leads to the most satis-
fying results. Figure 11 demonstrates the trajectories formed
by the optimization processes of the proposed method ap-
plied to the data with Gaussian, structural and hybrid noise.
It can be noticed that the local pdf maxima are “better de-
fined” in comparison to the pdf shown in Fig. 7 as in this
case a smaller value of o> = 0.002 was used within the
Gaussian kernel. Regarding convergence of the different tra-
jectories, the same conclusions as in the first set of experi-
ments can be made.

Although the main objective of the described experiment
was to demonstrate a superior robustness of the proposed
methods with respect to severe random and structural noise,
the accuracy of the method was also tested on repeated ex-
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Fig. 11 Trajectories in the first two principal axes of the shape space:
(i) solid for data with Gaussian noise; (ii) dash for data with structural
noise; (iii) dotted for data with hybrid noise
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Fig. 12 Training set used to build the shape space for the cup object

periments with different combination of the target image
and structural noise pattern. It transpired that the proposed
method was able to localize object boundary with an average
accuracy of 1.2, 1.7 and 2 pixels when operating respectively
on images with Gaussian, structural and hybrid noise.

3.2 Gray Scale Images

Finally experiments were carried out using a gray scale im-
ages to test performance of the proposed methodology on
real images. The first test image used in these experiments
is shown in Fig. 13(a) where the objective was to segment
the cup. The shape space was constructed from the image set
shown in Fig. 12, with a subset of the MPEG7 CE shape-1
Part B database used. It can be clearly seen that the train-
ing shapes integrate a large shape variability, and that differ-

@ Springer

Fig. 13 Segmentation results for the cup image (a) an image to be seg-
mented, (b) result of segmentation using Chan-Vese model, (¢) result
of the segmentation using the multi-reference method from [9], (d) re-
sult of the segmentation using the proposed method
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Fig. 14 Trajectory in the space of the first two principal directions
of the cup shape space corresponding to result shown in Fig. 13. The
square represents the starting point, the friangle the projection of the
final detected shape

ent positions of the handle are taken into account (left and
right). Results of segmentation using the Chan-Vese, multi-
reference and the proposed method are shown in Fig. 13.

Assuming that the goal of the segmentation was to re-
cover the shape of the cup, the proposed method leads to
more accurate result with the final shape segmentation not
altered by the drawing on the cup or by books and a pen
in the background. The corresponding trajectory of the opti-
mization process can be seen in Fig. 14.

This demonstrates that, the proposed method is more ro-
bust than the other two tested methods with respect to “shape
distractions” present in the data. The final result can be seen
as a good compromise between image information and the
prior shape constraints imposed by the training data set used.
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Fig. 15 Training set used to build the shape space for the garden
gnome figurine

Fig. 16 Contour evolution for the garden gnome figurine showing re-
sults for iterations O (initial contour), 5, 15, 25, 30 and 39 (stable con-
tour)

The second test image used in the experiments is shown
in Fig. 16, where the objective is to segment the garden
gnome figurine. This time the training data was obtained
from a video sequence showing the same figurine rotating
against a black background. The silhouettes used for train-
ing are shown in Fig. 15. These were extracted from 49
frames, sampled from a video sequence covering approxi-
mately 320° of the rotational viewing angle of the figurine.

-0.2

Fig. 17 Shape trajectory shown in the feature space spanned by first
two principal directions, corresponding to contour evolution shown in
Fig. 16. Superimposed silhouettes show shapes represented at different
locations of the shape space

Fig. 18 More results obtained for the garden gnome figurine: (a—b)
stable contours; (c—d) corresponding segmented propagation fields PF
indicating image driven shape internal (white) and external (black) re-
gions

Figure 16 shows initial contour (top left) and the stable
contour (bottom right) together with a sample of the inter-
mediate shapes demonstrating the contour convergence pro-
cess.

Figure 17 shows corresponding shape evolution in the
feature space. It could be noticed that although contour was
initially evolving around shapes shown in the bottom row of
Fig. 15, represented in the top left part of the feature space,
it was eventually able to cross a “long valley” in the feature
space and converge to a shape in the vicinity of the shapes
shown in the top row of Fig. 15.

Figure 18 shows results obtained for two other images
depicting the same garden gnome figurine. In both cases the
contours converged to the correct shapes despite the occlu-
sions and the distractors in the background. To demonstrate
the robustness of the method the corresponding segmented
propagation fields PF = ((I — M_QC)Z - - [,LQ)Z), calcu-
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lated in Eq. (24) as part of contour update in the image do-
main, are shown in Fig. 18(c—d). In those images white and
black pixels correspond respectively to the positive and neg-
ative values of the PF function. It can be clearly noticed that
the shape priors are activated in both cases as the stable con-
tours ignore erroneous image driven shape internal/external
region indicators.

4 Conclusions

The paper describes a novel method for shape detection and
image segmentation. The proposed method can be seen as
constrained contour evolution, with the evolution driven by
an iterative optimization of the posterior probability func-
tion that combines a prior shape probability, the coupling
distribution, and the image likelihood function. The prior
shape probability function is defined on the subspace of
Legendre moments and is estimated, using Parzen window
method, on the training shape samples given in the esti-
mated beforehand shape space. The likelihood function is
constructed from conditional image probability distribution,
with the image modeled to have regions of approximately
constant intensities. The coupling distribution is defined
as the prior distribution on the image likelihood function
which imposes feasible shapes changes based on the current
shape parametrization in the shape space. The resulting con-
strained optimization problem is solved using combinations
of level set active contour evolution in the image space and
steepest descent iterations in the shape space. The decou-
pling of the optimization processes into image and shape
spaces provides an extremely flexible optimization frame-
work for general statistical shape based active contour where
evolution function, statistical model, shape representation
all become configurable. The presented experimental results
demonstrate very strong resilience of the proposed method
to the random as well as structural noise present in the im-
age.
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