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Abstract   

VP1, a putative a-helical antimicrobial peptide (a-AMP) inhibited growth of Bacillus subtilis 

and Escherichia coli at 500 µM. The peptide induced stable surface pressure changes in 

monolayers formed from B. subtilis native lipid extract (circa 4.5 mN m-1) but transient 

pressure changes in corresponding E. coli monolayers (circa 1.0 mN m-1), which led to 

monolayer disintegration. Synthetic lipid monolayers mimetic of the extracts were used to 

generate compression isotherms. Thermodynamic analysis of B. subtilis isotherms indicated 

membrane stabilisation by VP1 ( GMix < 0), via a mechanism dependent upon the 

phosphatidylglycerol to cardiolipin ratio. Corresponding analysis of E. coli isotherms 

indicated membrane destabilisation by the peptide ( GMix > 0). Destabilisation correlated 

with PE levels present and appeared to involve a mechanism resembling those used by tilted 

peptides.  These data emphasise that structure / function analysis of a-AMPs must consider 

not only their structural characteristics but also the lipid make-up of the target microbial 

membrane.     



 

3

 
Introduction 

Over the last twenty-five years, there has been widespread research into the potential of 

antimicrobial peptides to act as novel antibiotics (Giuliani et al., 2007; Mookherjee & 

Hancock, 2007; Nizet, 2007; Zaiou, 2007). In this capacity, amongst the most extensively 

studied of these agents are peptides that adopt an a-helical structure (a-AMPs) to exert their 

antimicrobial activity (Castro et al., 2006; Zelezetsky & Tossi, 2006). These peptides are 

produced by a diverse variety of organisms ranging from amphibians (Apponyi et al., 2004; 

Boland & Separovic, 2006) to insects (Bulet & Stocklin, 2005; Tamang & Saier, 2006) and 

are able to kill an extraordinarily wide spectrum of cells and microbes, ranging from bacteria 

(Durr et al., 2006) to tumour cells (Dennison et al., 2006).   

All known a-AMPs appear to be lipid interactive, either passing through the membrane to 

attack intracellular targets or, as in most cases, using direct invasion of the microbial 

membrane itself as their primary killing mechanism (Bechinger & Lohner, 2006; Sato & 

Feix, 2006). The relatively non-specific nature of these mechanisms of antimicrobial action is 

reflected in a general lack of microbial resistance to a-AMPs and where such resistance has 

been reported, levels are much lower than those shown by microbes to conventional 

antibiotics.  Indeed, a-AMPs show many potential advantages over these latter antibiotics and 

are viewed as attractive alternatives in the fight against the current global problem of 

microbial pathogens with multi-drug resistance (Jenssen et al., 2006; Marr et al., 2006).  

Despite intensive study, detailed descriptions for the microbial killing mechanisms used by a-

AMPs are still lacking. Most a-AMPs are cationic and are presumed to target bacterial cells 

via electrostatic interactions with negatively charged moieties in the bacterial envelope.  

These include anionic lipids and lipopolysaccharide (LPS) phosphate groups in the case of 

the Gram-negative outer membrane and techoic acids in the case of the Gram-positive 

membrane (Nizet, 2007). Once a-AMPs have gained access to the cytoplasmic membrane of 

bacteria, they are able to invade the lipid bilayer and a number of general models have been 

presented to describe such invasion. These models variously propose that a-AMPs form 

“barrel stave” membrane pores or “carpet” the membrane, which can then lead to toroidal 

membrane pore formation or solubilisation of the membrane in a detergent like manner.  

These a-AMP membrane interactions then lead to lysis or permeabilisation of target 
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microbial cells (Bechinger & Lohner, 2006; Sato & Feix, 2006). The Shai-Huang-Matsazuki 

(SHM) model was recently presented and incorporates aspects from several of these former 

models. Essentially, the SHM model proposes that “carpeting” of the microbial membrane 

with -AMPs leads to the displacement of membrane lipid, alterations to membrane structure 

and either microbial membrane destruction or peptide internalization (Zasloff, 2002). Most 

recently, theoretical analyses (Dennison et al., 2005b) supported by experimental evidence 

(Marcotte et al., 2003), have suggested that some -AMPs may invade microbial membranes 

via the use of oblique orientated a-helices, or tilted peptides. The vast majority of membrane 

interactive -helices possess relatively constant levels of hydrophobicity along the -helical 

long axis, leading these -helices to adopt stable membrane orientations that are either 

approximately parallel or perpendicular to the membrane surface, as generally assumed for 

lipid interactive -AMPs. However, in contrast, oblique orientated -helices possess a strong 

gradient in the level of hydrophobicity along their helical long axis. These hydrophobicity 

gradients allow the protein -helices to penetrate the membrane at an angle between 30

 

and 

60 , thereby promoting the destabilisation of lipid organisation and leading to a range of 

effects such as the generation of non-bilayer structures and membrane fusion (Brasseur, 

2000; Harris et al., 2000; Rahman et al., 1997; Thomas & Brasseur, 2006).  The -helix 

formed by VP1, a cationic peptide derived from m-calpain (Brandenburg et al, 2002), shows 

many of the structural characteristics possessed by membrane interactive oblique orientated 

-helices (Dennison et al., 2005a)  as shown by comparisons to aurein 1.2 and citropin 1.1 

(Fig. 1), which are known cationic tilted peptides from Australian tree frogs (Boland & 

Separovic, 2006) with a-AMP properties. It has previously been shown that these three 

peptides are active at the membrane interface and possess a  balance between the levels of 

amphiphilicity and hydrophobicity that are associated with tilted a-AMPs (Dennison et al., 

2005b), thus making VP1 a candidate antibacterial.   

In general, the construction of models to describe microbial membrane invasion by a-AMPs 

has been based on data obtained from studies involving model membranes. These studies 

have established that interaction of a-AMPs with membrane lipid involves a number of key 

structural properties possessed by these peptides, such as residue composition, charge, 

hydrophobicity and amphiphilicity.  It is also well established that the broad-range 

antimicrobial activity of a-AMPs requires that they are able to invade membranes with 

widely varying lipid compositions.  However, few studies appear to have considered how this 
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variability influences the mechanisms of membrane invasion used by these peptides. In 

response, we have used the approach of  Henzler-Wildman  et al., (2004) who utilised  model 

membranes formed from bacterial lipid extracts or synthetic lipid mixes to investigate the 

bacterial membrane interactions of the human a-AMP LL-37 (Henzler-Wildman et al., 2004).  

We employ monolayers formed from whole lipid extracts of Bacillus subtilis and Escherichia 

coli to study the bacterial membrane interactions of VP1.  These native bacterial lipid 

monolayers are then mimicked using synthetic lipid mixes with know composition to 

generate compression isotherms and facilitate thermodynamic analysis of these VP1-

membrane interactions. Based on the results of these studies in conjunction with those 

obtained from FTIR lipid phase transition analysis and bacterial toxicity assay of the peptide, 

we propose models for the antibacterial action of the peptide.  

2. Experimental Procedures 

2.1 Materials  

The synthetic peptide, VP1 (GTAMRILGGVI), was supplied by PEPSYN (UK), synthesised 

by solid state synthesis and purified by HPLC to purity greater than 99%, confirmed by 

MALDI mass spectrometry. Nutrient broth, Luria Bertani broth (LBB) and Tryptic soy broth 

were purchased from LabM (UK).  Buffers and solutions for monolayer experiments were 

prepared from Milli-Q water. Dioleoylphosphatidylglycerol (DOPG) and 

dioleoylphosphatidylethanolamine (DOPE) were purchased from AlexisCorporation (UK). 

Cardiolipin (CL) from E. coli was purchased from Avanti. Tris 

(Tris{hydroxymethyl}aminomethane), HEPES (N-[2-Hydroxyethylpiperazine-N’-[2-

ethanesulphonic acid]) and all other reagents were purchased from Sigma (UK).   

2.2 Methods 

2.2.1 Activity of VP1 against planktonic bacteria 

Cultures of B. subtilis, strain NCIMB 8054, and E. coli, strain W3110, which had been 

freeze-dried in 20% (v/v) glycerol and stored at -80 °C, were each used to inoculate two 10 

ml aliquots of nutrient broth.  After overnight incubation in an orbital shaker (100 rpm, 37 
°C), 100 µl of each culture was used to inoculate two 100 ml aliquots of nutrient broth in 250 

ml flasks, which were then incubated with shaking (100 rpm, 37 °C) until the exponential 

phase was reached (OD = 0.6;  = 600 nm).   A 1 ml aliquot of each bacterial sample was 

centrifuged (15000 g, 3 min, 25 °C) using a bench top centrifuge and the resulting pellet 

washed three times in 1 ml aliquots of Tris (10 mM, pH 7.5). For each sample, cells were 
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then re-suspended in 1 ml of this buffer containing VP1 at a final concentration of 3 mM, 

which had previously been determined as its minimum lethal concentration (MLC) for both 

B. subtilis and E. coli in the range 0 to 5 mM.   These culture / peptide mixtures were 

incubated at 37 °C and samples taken at the beginning of the experiment (time zero), and at 

15 minute intervals for 1 hour and then hourly intervals for 7 hours.  As a control, cultures of 

both bacterial strains were similarly treated but in the absence of peptide. At each sampling, 

10 µl of culture was removed and a ten-fold serial dilution (10-1 to 10-7) prepared in Tris (25 

mM, pH 7.5).  Aliquots (10 µl) of each dilution were surface-spread onto nutrient agar plates, 

which were then incubated at 37 °C for 12 hours.  Colony counts were undertaken and 

expressed as colony forming units (CFUs) ml-1. The percentage reduction in colonies for each 

time interval was calculated and recorded as a function of time.    

2.2.2 Activity of VP1 against bacterial biofilms 

Biofilms of B. subtilis, strain NCIMB 8054, and E. coli, strain W3110 were prepared in two 

separate BD Falcon tissue culture slides.  Strains were grown for 24 hours at 37 °C in 10 ml 

Luria Bertani broth (LBB) for E. coli and in Tryptic soy broth for B. subtilis.  Aliquots (0.75 

ml) of each broth were dispensed separately into the 8 well BD Falcon tissue culture slides 

and 10µL of each overnight culture was inoculated into each chamber of the chamber slide.   

For biofilm formation the incubation time was 24 h at 37 °C. The medium from the wells was 

then removed using a pipette and the biofilm was washed in sterile distilled water to ensure 

all planktonic cells were removed.  Aliquots of 0.5 mL of peptide solution (8mM) of 

decreasing concentrations (ranging from 4 mM to 0.0625 mM) were prepared by a series of 

doubling dilution with ¼ strength Ringers.  The biofilms in each well of the culture slides 

were then treated with a 0.5 ml of VP1 peptide stock solutions.  The slides were then 

incubated for 24 h at 37 °C.  After incubation, the wells were emptied and the plastic chamber 

removed.  The slides were then stained with Vetashield mounting medium containing 

propidium iodide solution (1.5 µg ml-1), for 20 minutes at room temperature.  Examination of 

the stained biofilm slides was performed using fluorescence microscopy   Images were 

recorded at 480 nm excitation and at 530 nm emission.    

2.2.3 Total lipid extracts from cells of B. subtilis and E. coli  

Total lipid extracts of B. subtilis and E. coli were obtained using a modified form of the 

procedure first described by Bligh and Dyer (Bligh & Dyer, 1959). Essentially, cultures of 

these organisms were separately grown in nutrient broth as described above. When in the 
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exponential phase (OD = 0.6;  = 600 nm), 1 ml of each culture was extracted, washed twice 

in Tris buffer (25 mM, pH 7.5) and centrifuged (15000 g, 5 min) to form a pellet.  Each pellet 

was then resuspended in 1 ml Tris buffer (25 mM, pH 7.5) and to a 0.4 ml aliquot of this cell 

suspension, 1.5 ml of a 1:2 (v/v) chloroform - methanol mixture was added.  Each of these 

cell / solvent samples was then vortexed vigorously for 5 minutes, a further 0.5 ml 

chloroform added and the whole again vortexed for 5 minutes.  To each sample, 0.5 ml water 

was added, the whole vortexed for 5 minutes and then centrifuged at low speed (660 g, 5 

min) to produce two phases.  The lower organic layer was transferred to a fresh centrifuge 

tube, concentrated using a Jouran speed vac (Jouran, UK) and the dried lipid extract stored at 

-20 °C under N2.   

2.2.4 FTIR spectroscopic analyses of VP1 – lipid interactions 

2.2.4.1 Preparation of lipid  vesicles 

Lipid vesicles were prepared according to Keller et al., (Keller et al., 1992). Essentially, total 

lipid extracts of B. subtilis and E. coli, respectively, were resuspended in chloroform, dried 

with nitrogen gas and hydrated with HEPES (10 mM, pH 7.5) to give final total lipid 

concentrations of 150 mM. The resulting cloudy suspensions were sonicated at 4 °C with a 

Soniprep 150 (ISTCP, USA) sonicator (amplitude 10 microns) until clear (30 cycles of 30 

seconds) and then centrifuged (15 min, 3000 g, 4 °C).  

2.2.4.2 FTIR analysis of VP1 effects on lipid phase transition properties  

The final VP1 concentration of 3mM was obtained by solubilising the peptide in vesicle 

suspensions formed from the total lipid extracts of B. subtilis and E. coli. Corresponding 

suspensions of vesicles were prepared with no peptide present served as controls.  All 

samples were then subjected to automatic temperature scans with a heating rate of 3 °C (5 

min)-1 and within the temperature range 0 °C to 60 °C. For every 3 °C interval, 50 

interferograms were accumulated, apodized, Fourier transformed and converted to 

absorbance spectra (Brandenburg et al., 1997). These spectra monitored changes in the 

   

acyl chain melting behaviour of phospholipids with these changes determined as 

shifts in the peak position of the symmetric stretching vibration of the methylene groups, 

s(CH2), which is known to be a sensitive marker of lipid order. The peak position of s(CH2) 

lies at 2850 cm-1 in the gel phase and shifts at a lipid specific temperature Tc to 2852.0 cm-1 - 

2852.5 cm-1 in the liquid crystalline state. 
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2.2.5 Lipid monolayer studies on VP1 

2.2.5.1 Langmuir-Blodgett system  

Monolayer investigations were performed using Langmuir-Blodgett equipment supplied by 

NIMA (UK), which was mounted on a vibration-isolated table.  Studies were conducted 

using a Teflon trough, which possessed surface area dimensions of 5 cm × 16 cm and held a 

volume of 80 ml, and was fitted with two mechanically coupled Delrin barriers (Hardy et al., 

2006).  All experiments were conducted at an operating temperature of 21.0 ± 1 °C and used a 

subphase of Tris (10 mM, pH 7.5), which had been prepared with purified MilliQ water 

(specific resistance 18 M cm). Unless indicated otherwise, VP1 was introduced into the 

subphase via an injection port to give desired final concentrations. The subphase was 

continuously stirred by a magnetic bar (5 rpm) and surface tension was monitored by the 

Wilhelmy method using a paper plate (Whatman’s Ch1) in conjunction with a microbalance, 

as described by Demel (Demel, 1974). Contaminants were removed from the subphase 

surface by aspiration and a stable surface pressure taken to be that with fluctuations of less 

than 0.01 mN m-1. Changes in monolayer surface pressure/area were recorded as graphic 

output on a PC using NIMA software, which interfaced with the Langmuir-Blodgett 

microbalance.  

2.2.5.2 VP1 interactions with lipid monolayers  

The ability of VP1 to penetrate lipid monolayers at constant area was studied.  Monolayers 

were formed by spreading chloroform solutions of total lipid extract from B. subtilis and E. 

coli respectively onto a Tris subphase. Additionally, monolayers were formed by spreading 

chloroform solutions of synthetic lipid mixes, which were designed to mimic membranes of 

B. subtilis and E. coli respectively onto the Tris subphase. These latter monolayers were 

formed from DOPG, DOPE and CL in the molar ratios described in Table 1. After spreading, 

the solvent was allowed to evaporate off the subphase of the surface over 30 minutes and then 

the lipid monolayer was compressed at a velocity of 5 cm2 min-1 to give a surface pressure of 

30 mN m-1.  The barriers were maintained in this position and VP1 was introduced into the 

Tris subphase to achieve a peptide concentration of 20 µM, which was determined as optimal 

for these experimental conditions (Dennison et al., 2005a). Interactions of the peptide with 

lipid monolayers were monitored as changes in monolayer surface pressure versus time.   
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The ability of VP1 to interact with lipid monolayers was also investigated using compression 

isotherms.  Monolayers were formed by spreading chloroform solutions of either DOPG, 

DOPE, CL or synthetic lipid mixes (Table 1) on to a 10 mM Tris buffer subphase.   

Additionally monolayers formed on a Tris buffer subphase using the lipid mixes as described 

in Table 1, but with PE molar ratios that varied between 3.5 and 15, and CL / PG mixtures at 

molar ratios that varied between 0.5 and 3.0.  After spreading, the solvent was allowed to 

evaporate off the subphase surface over 30 minutes and then the lipid monolayer compressed 

using a barrier speed of 5 cm min-1 until monolayer collapse pressure was achieved.  These 

experiments were repeated except that VP1 was introduced into the subphase to give a final 

peptide concentration of 20 µM. For all compression isotherms, changes in lipid monolayer 

surface pressure with changes in monolayer area were recorded.  

2.2.5.3 Thermodynamic analysis of VP1 interactions with lipid monolayer isotherms   

The phase state of monolayers was studied using the compressibility modulus (Cs
-1).  This 

parameter provides a measure of the compressional elasticity of a lipid monolayer, thereby 

providing information about lipid packing within the monolayer (Alminana et al., 2004), and 

is given by:  

A
ACs

1  ……… (1) 

where ( ) represents monolayer surface pressure and (A) is the area per molecule in the 

monolayer.  

The thermodynamic stability of monolayers was investigated using the Gibbs free energy of 

mixing ( GMix). This parameter provides a measure of the relative stability of a monolayer by 

considering the energetics of miscibility of its pure lipid components and is given by:  

……….(2)  

where A1,2, ...n is the molecular area occupied by the mixed monolayer, A1, A2 …An are the 

area per molecule in the pure monolayers of component 1, 2,…n, X1, X2…Xn are the molar 

fractions of the components and 

 

is the surface pressure.  Numerical data were calculated 

from the compression isotherms according to the mathematical method of Simpson (Todd, 

1963).   
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The interactions between component lipid molecules of monolayers were examined using the 

interaction parameter (a). This parameter relates the interaction of each molar fraction of 

lipid in a monolayer to the energy gain through mixing of the monolayer and is given by:      

)( 11 n
nn

n

Mix

XXXXRT

G
…… (3) 

where X are the molar fractions of the monolayer lipid components, R = 8.314 J mol-1 K-1 and 

T = 294 K.    

The stability and binding interactions of monolayers were further investigated using the 

mixing enthalpy ( H), which is given by:   

RT 
……… Eq. 4 

where R and T are as defined in equation 5, and Z is the packing fraction parameter, which is 

calculated using the Quikenden and Tam model (Quickenden & Tan, 1974).    

3. Results 

3.1. VP1 toxicity to bacterial strains  

When directed against planktonic bacteria, it was found that 3 mM VP1 took 4 hr to induce 

100% cell death in the case of B. subtilis but 1 hr for E. coli under corresponding conditions 

(Fig. 2A). This represents a significant difference in the rates at which VP1 induces cell death 

in these latter organisms as confirmed by use of the Friedman’s test (p = 0.003) and indicates 

that the peptide has an ability to kill E. coli more rapidly than B. subtlis. When directed 

against bacterial biofilms, VP1 exhibited an MIC = 500 µM and an MLC of 4 mM against 

both B. subtilis and E. coli (Fig. 2B).    

3.2. FTIR spectroscopic analyses of VP1 - lipid interactions  

FTIR lipid phase transition analysis showed that in the absence of VP1, vesicles formed from 

total lipid extracts of B. subtilis and E. coli showed different phase transition properties (Fig. 

3A and Fig. 3B).  In the case of B. subtilis the fluidity of the membranes underwent a general 

rise in wavenumber with temperature (Fig. 3A) which is indicative of a monotonous increase 

of the acyl chain length.  In contrast, the E. coli membrane system (Fig. 3B) underwent a 
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clear transition from the gel phase to liquid crystalline phase over the temperature range 25 

°C to 40 °C with a concomitant increase in membrane fluidity as indicated by the rise in 

wavenumber from circa 2851.5 cm-1 to 2853.5 cm-1. In the presence of VP1, there is no 

significant change in the melting temperature range of both systems but significant changes 

in membrane fluidity were exhibited.  For E. coli the fluidity of membranes underwent a 

significant decrease as indicated by a general fall in wavenumber of between 0.5 to 1.0 cm-1 

(Fig. 3B), which is in contrast to B. subtilis where there was an increase in fluidity of 

comparable magnitude.    

3.3. VP1-lipid monolayer interactions at constant area  

The interactions of VP1 with monolayers that mimicked the membranes of B. subtilis and E. 

coli were investigated at constant area. For each organism, monolayers formed from total 

lipid extracts or synthetic lipid mixes (Table 1), were found to form stable monolayers at a 

surface pressure of 30 mN m-1 (Fig. 4A and Fig. 4B), which was taken to represent that of 

naturally occurring membranes (Blume, 1979; Marshall & Arenas, 2003; Ronzon et al., 2002; 

Seelig, 1987).  VP1 induced stable increases in the surface pressure of both monolayers tested 

in the case of B. subtilis membrane mimics and after 4000 sec these pressure increases 

reached maximal values of 4.5 mN m-1 in the case of synthetic membrane mixes and 3.0 mN 

m-1 in the case of total lipid extracts (Fig. 4A). In contrast, for E. coli membrane mimics, the 

peptide induced maximal surface pressure increases of 2.5 mN m-1 in monolayers formed 

from synthetic lipid mixes and 1 mN m-1 in those formed from total lipid extracts. For these 

latter monolayers, after a period of apparent stability, a decrease in surface pressure was then 

observed, which after 1500 sec led to surface pressures values lower than that of original 

monolayer, indicative of monolayer disintegration (Fig. 4B).   

3.4.  VP1-lipid compression isotherms and their thermodynamic analysis  

Compression isotherms were obtained for monolayers formed from synthetic lipid mimics of 

B. subtilis and E. coli membranes respectively (Fig. 5A), and from each individual 

component lipid of these membrane-mimics (Fig. 5C). Corresponding compression isotherms 

were obtained for these monolayers in the presence of VP1 (Fig. 5B and Fig. 5D). For these 

B. subtilis and E. coli model membranes, data from Fig. 5 and equation 1 were used to 

calculate the values of Cs
-1 (Table 2). Table 2 shows that these isotherms have low values of 

Cs
-1, indicating that all monolayers were in a liquid expanded phase (Davies & Rideal, 1963) 

and thus were fluid with high compressibility.  Table 2 also shows that in the presence of 
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VP1, a general decrease in Cs

-1 was observed with rising surface pressure, indicating 

monolayer expansion due to peptide interactions.   

The isotherms from Fig. 5 were also used to calculate the Gibbs free energy of mixing 

( GMix). Table 3 shows that for both organisms, GMix  << RT = 2444.316 J mol-1, indicating 

that deviations from ideal mixing behaviour in these model membranes are small (Sospedra 

et al., 2001). Table 3 also shows for both model membranes, GMix varies with surface 

pressure and according to the absence or presence of VP1. In the absence of VP1, values of 

GMix > 0 were observed for B. subtilis model membranes indicating energetically unstable 

interactions between the individual lipid components of these membranes.  However, in the 

presence of VP1, GMix < 0, indicating that there are attractive interactions between the 

individual monolayer components, in turn, implying that the monolayer is stable. These 

values of GMix for the lipid:peptide mix become increasingly more negative with increasing 

surface pressure, showing that at higher surface pressures, these monolayer mimics of B. 

subtilis are more stable than the monolayers formed by their pure components.  In contrast, in 

the absence of VP1, values of GMix < 0 were observed for E. coli model membranes, 

indicating a stable monolayer.  However, in the presence of VP1, GMix > 0, indicated that 

although the monolayer components are miscible, interactions are destabilised by the peptide, 

thereby decreasing membrane stability. Values of GMix increased with rising surface 

pressure, implying that these E. coli model membranes became increasingly less stable with 

compression   

Isotherms of CL:PG monolayers with varying lipid ratios were analysed.  At a ratio of 1.6:1, 

which corresponds to that found in B. subtilis membranes (Table 1), GMix changed from 

+200 to – 100 on addition of VP1 (Fig. 6), indicating a stabilising effect. In contrast, at a 

CL:PG ratio of 2:1, which corresponds to that found in E. coli membranes (Table 1), GMix 

was +400 and was not significantly affected by the presence of VP1 (Fig. 6). Similar analysis 

of compression isotherms was conducted where CL:PG ratios were held at those 

corresponding to B. subtilis or E. coli membranes respectively (Table 1) and PE was 

progressively introduced into these systems (Fig. 7 and Fig. 8). In the case of B. subtilis 

membrane mimics, increasing levels of PE had no significant effect on the stability of these 

membranes around the CL:PG ratio found in this organism with the presence of PE causing 

GMix to vary by only 50 in the presence and absence of VP1 over the range tested (Fig. 7). 
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In contrast, with CL:PG ratios corresponding to E. coli membrane mimics, increasing levels 

of PE caused GMix to move from +450 to -400 in the absence of VP1 but from +450 to +100 

in the presence of VP1 (Fig. 8), indicating a clear stabilising effect on membrane stability by 

the presence of PE but a destabilising effect by the peptide.   

Further thermodynamic analysis of isotherms in Fig. 5 was undertaken and the interaction 

parameter (a) and mixing enthalpy ( H) were calculated for these monolayers using 

equations 3 and 4. Table 4 shows that in the absence of VP1, both a and H > 0 for B. 

subtilis model membranes and < 0 for those of E. coli.  However, in the presence of VP1, a 

and H < 0 for B. subtilis model membranes and > 0 for those of E. coli.  These data indicate 

that in the case of E. coli, membranes are thermodynamically less stable in the presence of 

VP1 than those of B. subtilis.   

4. Discussion 

VP1 was found to possess weak antibacterial activity, exhibiting an MLC of 3 mM against 

planktonic E. coli and B. subtilis and an MIC of 500 M against biofilms formed from these 

organisms (Fig. 2), the metric generally used to characterise such anti-biofilm activity (Curtin 

& Cormican, 2003).  However, for comparative purposes, the MLC of VP1 against these 

latter biofilms was also determined and found to be 4 mM, which is consistent with the view 

that biofilms of organisms are more resistant to biocides than their planktonic counterparts, 

primarily due to the development of resistant phenotypes within the biofilm (del Pozo & 

Patel, 2007; Rodriguez-Martinez & Pascual, 2006).  These higher levels of resistance may be 

explained in part by the presence of exopolysaccharides (EPS) in the extracellular matrix of 

bacterial biofilms.  It has been shown that EPS possess structural properties mimetic of 

bacterial membranes, enabling them to bind -AMPs with mean hydrophobicity above a 

threshold of 0.4 as measured using the Liu-Deber hydrophobicity scale, effectively increasing 

the level of peptide required for biofilm killing (Chan et al., 2004; Kuo et al., 2007).   

Analysis of VP1 according to  Chan et al., (2004) shows VP1 to be sufficiently hydrophobic 

to engage in such EPS interactions since it has a mean hydrophobicity of 0.56.    

Toxicity assay showed comparable levels of VP1 were required to inactivate B. subtilis and 

E. coli in both their biofilm and planktonic forms (Fig. 2).  In the latter case though E. coli 

was killed four times faster than B. subtilis (Fig. 2A), suggesting that differing methods of 
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antimicrobial action may be involved. To investigate this suggestion further, the interactions 

of VP1 with membranes of B. subtilis and E. coli were undertaken using lipid monolayers at 

an initial surface pressure (30 mN m-1) characteristic of naturally occurring bacterial 

membranes.  In the case of monolayers formed from  B. subtilis membrane lipid extract, VP1 

showed maximal levels of interaction (3 mN m-1) that were consistent with penetration of the 

monolayer headgroup region by the peptide (Fig. 4A).  It is well established that Gram 

positive bacteria possess high levels of anionic lipid (Devine & Hancock, 2002; Zelezetsky & 

Tossi, 2006), which would clearly facilitate strong surface interactions between B. subtilis 

membranes and positively charged VP1.  Such stable binding would fit with membrane 

association characteristic of carpet based mechanisms of action.    

In contrast, VP1 showed initial interactions with monolayers formed from E. coli lipid extract 

(Fig. 4B) that led to lower levels of maximal interaction (1 mN m-1), which could correlate 

with the relatively reduced levels of anionic lipid possessed by membranes of Gram-negative 

organisms when compared to those of Gram-positive bacteria (Devine & Hancock, 2002; 

Zelezetsky & Tossi, 2006). However, after a short plateau region, in the case of E. coli, the 

kinetics of these initial interactions were superseded by those indicating monolayer 

disintegration, which clearly, must involve destabilisation of the lipid packing in these 

monolayers by VP1 with lipid reordering resulting. These results strongly suggest that in the 

case of E. coli the peptide uses a lytic mechanism, which resembles those that solubilise the 

membrane in a detergent like manner (Bechinger & Lohner, 2006; Sato & Feix, 2006) and 

involves disturbance of lipid acyl chains within the E. coli membrane core as previous 

reported in the case of membrane disruption by oblique orientated -helices (Brasseur, 2000; 

Thomas & Brasseur, 2006).   

To try and gain a further understanding of these differing effects, thermodynamic analysis of 

VP1 interactions with B. subtilis and E. coli membranes along with compression isotherm 

analysis was undertaken using monolayers formed from synthetic lipid mixes rather than 

bacterial total lipid extracts. Control experiments at constant area established that the 

synthetic monolayers provided a good model with VP1 showing comparable levels of 

interaction and similar kinetics to those observed from monolayers formed from lipid extracts 

(Fig. 4). Whilst it is recognised that these systems lack a range of non-lipid components 
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(Brogden, 2005), such studies are well documented as providing information regarding the 

important role of the lipid components with respect to the mode of action.    

Isotherm analyses of monolayers representing B. subtilis membranes showed that GMix was 

negative in the presence of VP1 but positive in its absence (Table 3), which in combination 

indicate that the peptide had a thermodynamically stabilising effect on these systems. Further 

analysis by varying the lipid composition, suggested that VP1 driven stabilization of B. 

subtilis membranes was dependent upon the to CL:PG ratio given that at a CL:PG ratio 

representing that of the organism (1.6:1, Table 1) and below, VP1 is seen to stabilise the 

system (Fig. 6).   Above this CL:PG ratio, the system appears more stable and is less affected 

by VP1.  

Isotherm analyses of E. coli membranes showed that GMix was positive in the presence of 

VP1 but negative in its absence (Table 3), which together indicate that the peptide had a 

thermodynamically destabilising effect on these membranes. The importance of the CL:PG 

ratio, as described above, appears to be confirmed when the lipid composition was varied to 

achieve higher CL:PG ratios, which include that representative of E. coli membranes (2:1, 

Table 1).  At these ratios it can be seen that there is little effect on membrane stability upon 

VP1 addition (Fig. 6). However, increasing the level of PE from zero to that found in the 

organism led to VP1 destabilising the lipid system, generating a change in GMix that went 

from +450 to -400 in the absence of VP1 but from +450 to +100 in the presence of VP1 (Fig. 

8).  These results imply that at this CL:PG ratio, the presence of PE was required for the VP1 

destabilising effect observed for E. coli membranes.  In contrast, increasing the level of PE 

from zero to a level comparable to that found in B. subtilis at the CL:PG ratio of this 

organism showed little effect on the action of VP1 (Fig. 7), confirming the importance of the 

CL:PG ratio in this latter case.       

These data clearly reinforce the suggestion that VP1 promotes its toxicity to B. subtilis 

through a mechanism of membrane invasion, which differs to that used in the case of E. coli 

and that these differences are due to lipid composition. The differences in the membranes 

dynamics were supported by FTIR, which showed a clear phase change in case of the more 

stable E. coli system but not in the case of the less stable B. subtilis system.  Lipid phase 

transition analysis was used to investigate the possibility that differences in the antimicrobial 

efficacy of VP1 may be related to the differing characteristics of these target membranes.  A 
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significant decrease in the membrane fluidity for E. coli extracts was observed in the 

presence of VP1 (Fig. 3B), which suggests that VP1 affects the hydrophobic membrane core 

in contrast to the effect seen for B. subtilis (Fig. 3A).  

The lipid phase transition data (Fig. 3) imply that the interaction of VP1 with B. subtilis 

membranes involves lipid headgroup binding in a stable manner, which would further support 

a mode of action based on the carpet type mechanism.  In the case of E. coli, the data support 

the proposal that VP1 invasion of the organism’s membranes may involve penetration of the 

membrane lipid core and membrane destabilisation followed by membrane solubilisation and 

lysis.  It is well established that the ability of tilted peptides to destabilise membranes is 

enhanced by the preference of PE to adopt non-bilayer structures (Bechinger & Lohner, 2006; 

Thomas & Brasseur, 2006). Taken with these isotherm data and theoretical analyses of the 

VP1 a-helix (Dennison et al., 2005b) these observations would support the suggestion that 

the peptide promotes toxicity to E. coli via the use of membrane interactive oblique 

orientated a-helical structure. Similar mechanisms of antibacterial action have been proposed 

for aurein 1.2 and citropin 1.1 (Dennison et al., 2005b; Marcotte et al., 2003), which are of 

comparable length to VP1 and have similar characteristics (Fig 1A).  These amphibian 

peptides have been shown to insert into lipid mimics of the bacterial membrane, resulting in 

membrane destabilisation and lysis via carpet-type mechanisms but are able to form oblique 

orientated structure (Ambroggio et al., 2004; Ambroggio et al., 2005; Balla et al., 2004; 

Boland & Separovic, 2006).     

In conclusion, VP1 functions as a weak a-AMP, killing E. coli and B. subtilis, at comparable 

levels. The peptide thus shows a comparable ability to kill both Gram-positive and Gram-

negative bacteria but appears to act via different mechanisms of membrane invasion in the 

two cases investigated. Differences between these mechanisms appear to depend upon the 

relative composition, stability and lipid packing characteristics of the target bacterial 

membrane. Taken overall, the results of this study emphasise the fact that a given a-AMP can 

utilise more than one mechanism of antimicrobial action, which is reinforced by recent 

studies (Ramamoorthy et al., 2006). It is thus clearly imperative that structure / function 

analyses of a-AMPs must take into account not only their own structural characteristics but 

also the make-up of the membrane target.   
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Table 1. Lipid composition of bacteria membranes.  Table shows the molar ratios of major 

lipids found in the membranes of Gram-positive and Gram-negative bacteria (Lohner & 

Prenner, 1999), which are represented in this study by B. subtilis and E. coli respectively.    

Table 2.  The compressibility moduli (Cs
-1) of lipid monolayers at varying surface pressure 

(p). Values of Cs
-1 were computed using data from compression isotherms (Fig. 5) and 

equation 1. Monolayers were formed from either: DOPG, DOPE, CL, or lipid mixtures that 

corresponded to membranes of B. subtilis and E. coli respectively, all as described above  

Table 3. The Gibbs free energy of mixing ( GMix) of lipid monolayers at varying surface 

pressure (p).

  

Values of GMix were determined for monolayers formed from lipid mixtures 

that corresponded to membranes of B. subtilis and E. coli respectively. These parameters 

varied with surface pressures and the presence (+VP1) or absence (-VP1) of VP1. For B. 

subtilis membrane mimics, GMix was changed from positive to negative values by the 

presence of VP1, indicating that the peptide rendered these monolayers thermodynamically 

stable. In contrast, the presence of VP1 changed GMix from negative values to positive 

values for E. coli membrane mimics, indicating that the peptide rendered these monolayers 

thermodynamically unstable. GMix was computed using data from the compression 

isotherms of Fig. 5 and equation 2, all as described above.  

Table 4. The interaction parameter (a) and enthalpy of mixing ( H) of lipid monolayers at 

varying surface pressure (p). Values of a and H were determined for monolayers formed 

from lipid mixtures that corresponded to membranes of B. subtilis and E. coli respectively. 

Values for these parameters were computed either in the presence (+VP1) or absence (-VP1) 

of VP1 using data from compression isotherms (Fig. 5) in conjunction with equations 2, 3, 

and 4 respectively, all as described above.   
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Table 1. Lipid composition of bacteria membranes.   

Bacterium CL DOPG DOPE 

B. subtilis 4.7 2.9 1.0 

E. coli 2.00 1.00 13.67 
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Table 2.  The compressibility moduli (Cs

-1) of lipid monolayers at varying surface pressure 
(p). 

  
Cs

-1 

(mN m-1) 

Pressure 

p (mN m-1)

 

CL DOPG DOPE B. subtilis E. coli 

5 5.717 8.22 6.06 8.37 7.65 

10 11.03 13.45 13.01 16.72 13.36 

15 40.41 18.95 19.89 17.35 18.12 

20 72.89 24.51 25.80 22.01 25.71 
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Table 3. The Gibbs free energy of mixing ( GMix) of lipid monolayers at varying surface 
pressure (p).  

  
GMix  

(J  mol-1) 

B. subtilis E. coli 

Surface Pressure 

(mN m-1) 

-VP1 +VP1 -VP1 +VP1 

5 0.91

 

-170.55

 

-16.17 3.13 

10 120.76

 

-298.35

 

-40.48 23.42 

15 365.93

 

-373.10

 

-53.11 36.85 
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Table 4. The interaction parameter (a) and enthalpy of mixing ( H) of lipid monolayers 
at varying surface pressure (p). 

  
a

 
H 

(J mol-1) 

B. subtilis E. coli B. subtilis E. coli 

Pressure 
(mNm-1) 

-VP1 +VP1 -VP1 +VP1 -VP1 +VP1 -VP1 +VP1 

5 0.04 -7.5 -1.6 0.3 49.24 -9182.4 -1984.0 385.0 

10 5.3 -13.1 -4.1 2.3 6502.1 -8031.6 -4966.9 2873.8 

15 11.2 -16.4 -5.3 3.7 13627.0 -6695.4 -6517.3 4521.4 
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FIGURE LEGENDS 

Fig. 1A

 
Analysis of (A) VP1 (GTAMRILGGVI), (B) citropin 1.1 (GLFDVIKKVASVIGGL-

NH2) and (C) aurein 1.2 (GLFDIIKKIAESF-NH2) for gradients in hydrophobicity using the 

normalised consensus hydrophobicity scale of (Eisenberg et al., 1982) and a seven residue 

window. Each peptide exhibited an overall progressive increase in hydrophobicity along it 

sequence, which in the case of VP1 and citropin 1.1 progressed from the N-terminus to the C-

terminus but in the reverse direction in the case of aurein 1.2. Fig. 1B. The sequences of VP1, 

citropin 1.1 and aurein 1.2 represented as two-dimensional axial projections. The -helix of 

each peptide possessed a hydrophilic face, composed of charged and polar residues (circled) 

and multiple gycines, and a wide hydrophobic face formed from bulky amino residues. Fig. 1 

was adapted from Dennison et al., (2005b).  

Fig.. 2A.

 

The viability of B. subtilis (dotted) and E. coli (solid) was measured by analysing 

the CFU’s as described in the methods.  Data are represented as percentage death rate in the 

presence of VP1 (3 mM). At these levels, the peptide is bacteriocidal, achieving a 100% 

death rate after 4 hours in the case of B. subtilis and after 1 hour in the case of E. coli. The 

percentage death rate was determined by comparison with identical non-inoculated control 

cultures, all as described above. Fig. 2B.

 

Laser scanning confocal images of E. coli and B. 

subtilis formed on BD falcon culture slides and stained with propidium iodide; Image A - 

light microscope image at × 400, B – not treated, C – 500 µM VP1 and D – 4 mM VP1.    

Fig. 3.

 

Shows FTIR analysis of VP1 effects on the phase transition properties of Vesicles 

formed from bacterial lipid extracts. In the absence of VP1, membranes of B. subtilis ( , Fig. 

3A) and E. coli ( , Fig. 3B) showed similar lipid phase transition properties going from the 

gel phase to the liquid crystalline phase over the range 25 to 40 C with a concomitant 

increase in membrane fluidity as indicated by the rise in wavenumber from circa 2851.5 cm-1 

to 2853.5 cm-1. In each case, the presence of VP1 caused no apparent shift in this temperature 

range but induced a significant change in membrane fluidity. The fluidity of B. subtilis 

membranes underwent a significant increase, as indicated by a general rise in wavenumber of 

between 0.5 to 1.0 cm-1 ( , Fig.3A). In contrast, the fluidity of E. coli membranes underwent 

a significant decrease, as indicated by a general fall in wavenumber of between 0.5 to 1.0  

cm-1 ( , Fig. 3B).  
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Fig. 4.

 
Shows the time course of VP1 with lipid monolayers at an initial surface pressure of 

330 mN m-1. These monolayers were formed from whole lipid extract from B. subtilis 

membranes (grey) and synthetic lipid mimics of these membranes (black) respectively (Fig. 

4A).  Fig. 4B monolayers were formed from whole lipid extract from E. coli membranes 

(grey) and synthetic lipid mimics of these membranes (black).  VP1 was introduced into the 

subphase to give a final concentration 20 µM and changes in monolayer surface pressure 

recorded as a function of time, all as described in the methods.    

Fig. 5.

 

Compression isotherm analysis of lipid monolayers. Fig. 5A and Fig. 5B show 

isotherms derived from lipid mixtures that corresponded to membranes of B. subtilis and E. 

coli in the absence and presence of VP1 at a final subphase concentration of 20 µM, 

respectively. Fig. 5C and Fig.5D show isotherms derived from (a) DOPE, (b) DOPG and (c) 

CL in the absence and presence of VP1 at a final subphase concentration of 20 µM, 

respectively. The variation of surface pressure with area per lipid molecule was monitored as 

monolayers were compressed, all as described above.  

Fig. 6.

 

Compression isotherms were derived from monolayers formed from CL and PG at 

varying ratios in the absence ( ) and presence ( ) of VP1 at a final subphase concentration 

of 20 µM. The variation of surface pressure with area per lipid molecule was monitored as 

monolayers were compressed, all as described above, and these data used to determine MixG

 

using equation 2, which was then plotted as a function of the monolayer CL:PG molar ratio.    

Fig. 7. Compression isotherms were derived from monolayers which formed from CL and PG 

at a ratio of 1.6:1 (Table 1) corresponding to that in B. subtilis.  Isotherms were obtained with 

varying levels of PE, in the absence ( ) and presence ( ) of VP1 at a final subphase 

concentration of 20 µM. The variation of surface pressure with area per lipid molecule was 

monitored as monolayers were compressed, all as described above, and these data used to 

determine GMix using equation 2, which was then plotted as a function of the monolayer PE 

molar ratio.    

Fig. 8.

 

Compression isotherms were derived from monolayers which formed from CL and 

PG at a ratio of 2:1 (Table 1) corresponding to that in E. coli.  Isotherms were also obtained 

with varying levels of PE, in the absence ( ) and presence ( ) of VP1 at a final subphase 
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concentration of 20 µM. The variation of surface pressure with area per lipid molecule was 

monitored as monolayers were compressed, all as described above, and these data used to 

determine GMix using equation 2, which was then plotted as a function of the monolayer PE 

molar ratio.   
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Fig. 1A  

   

Fig. 1B 
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Fig. 2   

Fig. 2A 

 

Fig. 2B 

A B C D

A B C D

E. coli

B. subtilis

A B C D
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E. coli
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Fig. 3   
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Fig. 4A  

 

Fig. 4B 
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Fig. 5  
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Fig. 6  
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Fig. 7  
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Fig. 8 
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