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Comparing the Online Learning Capabilities of Gaussian ARTMAP and Fuzzy ARTMAP
for Building Energy Management Systems

Maizura Mokhtar?, Joe Howe?

4School of Computing, Engineering and Physical Sciences, University of Central Lancashire,
Preston, PR1 2HE, UK (email: {MMokhtar, JMHowe}@uclan.ac.uk)

Abstract

Recently, there has been a growing interest in the application of Fuzzy ARTMAP for use in building energy management systems
or EMS. However, a number of papers have indicated that there are important weaknesses to the Fuzzy ARTMAP approach, such
as sensitivity to noisy data and category proliferation. Gaussian ARTMAP was developed to help overcome these weaknesses,
raising the question of whether Gaussian ARTMAP could be a more effective approach for building energy management systems?
This paper aims to answer this question. In particular, our results show that Gaussian ARTMAP not only has the capability to
address the weaknesses of Fuzzy ARTMAP but, by doing this, provides better and more efficient EMS controls with online learning

capabilities.
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1. Introduction

Fuzzy Predictive Adaptive Resonance Theory (ART), bet-
ter known as Fuzzy ARTMAP, was developed by Carpenter
et. al., 1992 [1] to provide, in response to input patterns: fast
and stable online recognition learning through the process of
incremental supervised learning of recognition categories and
multi-dimensional mapping, and hypothesis testing and adap-
tive naming. Fuzzy ARTMAP, a kind of artificial neural net-
work (ANN), often outperforms other types of feedforward
ANN [1]-[4]. This is because traditional feedforward ANNS,
such as the multi-layer perceptron-neural network, incorporate
learning schemes that are slow learning models and are learned
on the average order of the occurrences of its inputs [1]. An
example of this is the back error propagation. Such learning
mechanisms can also cause the ANN to degrade easily when
they are exposed to new information. For example, in the con-
text of building energy management systems or EMS, how the
dynamic changes in the outdoor temperature can affect the out-
put of the EMS-based ANN.

Fuzzy ARTMAP incrementally clusters multi-dimensional
input vectors into stable categories. This incremental learning
process prevents the previously learned maps to be significantly
affected when exposed to new information. This has led to the
growing interest in the application of Fuzzy ARTMAP for use
in energy applications.

Examples of the application of Fuzzy ARTMAP for use in
energy applications include:

1. Fault detection and identification: whereby the authors
of [5] describe the use of Fuzzy ARTMAP for fault di-
agnostics of complex multi circuit transmission systems
under various system and fault conditions. Authors of
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[6] describes the employment of the Fuzzy ARTMAP pat-
tern recognition technique to recognise the frequency re-
sponses of the winding admittance of high voltage trans-
formers under varying conditions of winding insulation,
and to also learn to establish the correlations between the
nature and physical location of occurrence of an internal
insulation fault in a transformer winding and its associated
frequency response. Authors of [7] present the application
of Fuzzy ART-ARTMAP to analyse the transient stability
analysis of electric energy systems. Fuzzy ART-ARTMAP
is a type of ANN that consists of the Fuzzy ARTMAP with
an additional Fuzzy ART module (Section 2.1). Lastly,
the authors of [8] describe the use of Fuzzy ARTMAP as
part of a decision making tool that performs automatic de-
tection and classification of voltage disturbances that can
affect power quality of the energy distribution system.

. Forecasting and prediction: Authors of [9] describe the

use of Fuzzy ART-ARTMAP for electric load forecast-
ing. Authors of [10] present the capabilities of Fuzzy
ARTMAP to perform hourly day-type outputs prediction,
based on which, generation can be forecasted. Authors
of [11] indicates how Fuzzy ARTMAP can be applied to
predict short wind speed, that can increase the effective-
ness of wind power integration to the existing grid. Fuzzy
ARTMAP is also shown capable of predicting the outlet
temperature of the absorption system that utilises a set
of solar collectors that satisfies the thermal necessities of
the vapour generator, with good efficiency. This is as de-
scribed in [12].

3. Building energy control: we have presented the results of

applying the Fuzzy ARTMAP that can perform thermal
comfort management and energy source control for a uni-
versity building [13]. Fuzzy ARTMAP is shown to out
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perform the existing building management system.

Other applications include: medical applications [14]-[15],
data classification [3]-[4], [16]-[17] and financial prediction
[18].

There are, however, weaknesses to the Fuzzy ARTMAP.
These were first identified by Williamson, 1996 [2]. The two
main weaknesses are: (i) its sensitivity to noisy data, and (ii)
inefficient fuzzy category generation. These weaknesses may
affect the accuracy of the Fuzzy ARTMAP when it is in use. For
EMS applications, this may reduce the EMS accuracy due to
“noise” produced by dynamic weather conditions. Williamson,
1996 [2] has developed the Gaussian ARTMAP to help address
these weaknesses.

This paper analyses the properties of Gaussian ARTMAP and
Fuzzy ARTMAP, and investigates which of the two is better
suited for use in a building energy management system with
online learning capabilities. The paper is organised as follows:
Section 2 provides a brief introduction to the Fuzzy ARTMAP.
Section 3 details its weaknesses. Section 4 summarises the
Gaussian ARTMAP, reiterating its development from the Fuzzy
ARTMAP. Section 5 describes the example building energy
management system used to conduct the comparative analysis,
and how online learning is performed. Section 6 presents re-
sults and analysis. Section 7 concludes the paper.

2. Fuzzy ARTMAP

Fuzzy ARTMAP creates a map of the correlated pairs {a, b},
where a is a set of inputs and b is either:

1. the predictive consequences of the inputs, or
2. the category definition of the presented inputs for a classi-
fication problem.

Fuzzy ARTMAP provides fast learning capabilities by con-
Jjointly maximising generalisation and minimising predictive er-
ror, in real time, in response to.an arbitrary ordering of its input
patterns, using only local information. Fuzzy ARTMAP con-
sists of two Fuzzy Adaptive Resonance Theory (Fuzzy ART)
modules: Fuzzy ARTa'and Fuzzy ARTb, which receive the in-
puts a and b respectively. The two Fuzzy ARTs are connected
by an inter-ART module, which also resembles a Fuzzy ART.
Further information on Fuzzy ART and inter-ART are provided
in Sections 2.1 and 2.2 respectively.

2.1.. Fuzzy ART

A Fuzzy ART consists of an attentional subsystem (Section
2.1.1) and an orienting subsystem (Section 2.1.2).

2.1.1. Attentional subsystem

In the attentional subsystem, a vigilance parameter p cali-
brates the minimum confidence that a Fuzzy ART must have
for the chosen recognition category to be activated by the in-
puts. This is instead of searching for another category activation
through a process of hypothesis testing. The recognition cate-
gory is provided by the orienting subsystem (Section 2.1.2). A
cycle of hypothesis testing is triggered if the degree of match is

less than p. This is called a match function. The degree of match
provides a measure of predictive confidence that indicates if the
chosen recognition category represents a, or the novelty of a
with respect to the hypothesis b is symbolically represented by
its recognition category [1].

Hypothesis testing terminates in a sustained state of reso-
nance that persists as long as the input remains approximately
constant. The resonance generates a focus of attention at the
attentional subsystem that selects the bundle of critical features
common to inputs a or I = (I, ..., 1y). M is the number of in-
puts. The resonating categories produced are (ji, ..., jy). N is
the number of categories.

Each category node j is associated with an adaptive weight
vector w = (wj,, ..., wj,,). The adaptive weights create the long
term memory or LTM traces for the Fuzzy ARTMAP. Each
LTM trace w, is monotone non-increasing through time (1) and
converges to a limit.

W;new) :B(I A W(;)Id)) + (1 _ﬂ)W;{)ld) (1)

B is the learning rate parameter 8 € [0, 1] and a A b = min(a, b).

Monotone non-increasing is achieved through a step called
complement coding. Complement coding incorporates the on-
cell of the input @ and its off-cell a® = 1 — a. Complement
coding normalises the inputs while preserving the amplitudes
of its features. Without complement coding, a Fuzzy ART cat-
egory only encodes the degree to which its critical features are
consistently present in the training of that category. With com-
plement coding, both the degree of absence and the degree of
presence of features are represented by the category weight vec-
tors. Without this additional processing, this could lead to cat-
egory proliferation as too many adaptive weights will converge
to zero.

For each input 7 that activates node j, the recognition cate-
gory T is defined by (2).

Tl) = ', )

Ipl = Zf‘;’l |pil, @ is the choice parameter and @ > 0. a@ —
0 because small values of a tend to minimise recoding of w;
during learning or resonance. Moreover, during resonance, if
wy is a subset of I, w; should remain unchanged and is therefore
conserved (3).

[T Awyl = wyl (3)

Resonance occurs if the match function (4) of the chosen cat-
egory J meets p or |x| = | A wy|, when |[I A wy| > p.

IAw
AN

Tz )

If otherwise, mismatch reset occurs and w; = 1.
In short, within the attentional subsystem, the activity vector
x obeys (5).



I, If input / is novel and no recognition category
is activated and cannot represent the inputs.

I Awy, If otherwise, a recognition category is activated

and J node is chosen.

(&)

2.1.2. Orienting subsystem

Fuzzy ART makes a category choice (the chosen recognition
category that best represents the inputs) when at most one J has
become active (2)—(5). The category choice is chosen using (6)
and is indexed by J; and that J satisfies (4).

Ty=max{T;: j=1,..,N} (6)

2.2. Inter-ART

The inter-ART module consists of a map field, which controls
the learning of an associative map from Fuzzy ARTa recogni-
tion categories to the Fuzzy ARTb recognition categories. A
recognition category classifies inputs or similar properties into
one category. Inter-ART allows the mapping between the a
recognition categories to the b recognition categories fo not di-
rectly associate each other, but rather, associates the symbolic
representation between the two recognition categories [1].

The map field also controls match tracking of the Fuzzy
ARTa and Fuzzy ARTb recognition categories. Match tracking
is designed to create the minimal number of Fuzzy ARTa recog-
nition categories needed to meet the accuracy criteria described
by the match function and to prevent category proliferation.
Match tracking prevents category proliferation by employing
the minimax learning rule. The minimax learning rule utilises
a vigilance parameter p. p of Fuzzy ARTa (p,) is increased by
the minimum amount required to search for and if necessary
learn of a new Fuzzy ARTa category that closely matches the
category activation produced by Fuzzy ARTb. The increase in
Pq 1s instigated by a predictive failure at Fuzzy ARTb, which
sacrifices the minimum amount of generalisation necessary to
correct the predictive error at Fuzzy ARTD.

The minimax learning rule enables the Fuzzy ARTMAP to
learn quickly, efficiently, and accurately as it conjointly min-
imises predictive error and maximises predictive generalisation.
Inter-ART p, therefore, performs back propagation of informa-
tion, whereby the search initiated by inter-ART can shift the
attention to-a novel cluster of features that can be learned into
a new Fuzzy ARTa recognition category that better predicts b.
The lower the value of p,, the larger the categories are formed.
Lower value of p, leads to a broader generalisation, higher
code compression and smaller categories compactness [1].

3. Weaknesses of Fuzzy ARTMAP

As described in the Introduction, Williamson, 1996 [2] indi-
cates that Fuzzy ARTMAP has two potential weaknesses: (i)
sensitivity to noise and (ii) inefficient category creation.

3.1. Sensitivity to noise

When the Fuzzy ARTMAP makes a false prediction (i.e, the
recognition category of Fuzzy ARTa does not match that of
Fuzzy ARTD), a new category is created. If the input falls near
the boundary between two categories, the newly created cate-
gory will be small enough to fit within this space.

When the training data is noisy, the categories within the fea-
ture spaces are created randomly in response to the different
predictions. The random creation of categories result in the cat-
egory proliferation. Category proliferation<s also partly due to
the use of large p value that allows for the fast learning mecha-
nism. Reducing p may address this issue:

3.2. Inefficient categories

The minimax learning rule indicates the categories are cre-
ated with the simplest statistics of the data: the minimum and
maximum values of the category range created to conjointly
minimise the predictive error and maximise the predictive gen-
eralisation. This creates a rectangular classification of data
which may not be suitable for the classification of the data.
Williamson, 1996 [2] indicated that this method is best suited
to data that are uniformly distributed within a category.

Williamson, 1996 also [2] points out: if the problem scales
to higher dimension, the ratio of the hypersphere volume to the
hyper-rectangular volume with equal diameter against that of
its dimension, as feature spaces approaches higher dimensions,
the volume of the hyper-rectangular category will be dominated
by the corners. He has developed the Gaussian ARTMAP to
address this issue.

4. Gaussian ARTMAP

Gaussian ARTMAP replaces the minimax learning rule
within the Fuzzy ART with a Gaussian classifier. This, there-
fore, creates a Gaussian ART. Gaussian classifier is in place of
the minimax learning rule, because Williamson, 1996 [2] indi-
cated that the minimax learning rule is ill-posed and the smooth
mapping of input-to-output is one of the weakest and most gen-
eral assumption to make. He indicated that a priori assump-
tions are required and the use of Gaussian distribution is ideal.
Gaussian classifier creates a category based on the Gaussian
distribution of the data, with mean, variance and a prior prob-
ability used to define the category. Hence, the introduction of
the Gaussian ARTMAP.

4.1. Learning

Gaussian ARTMAP is an incremental learning Gaussian
classifier, in which each output is determined during training to
correspond to any numbers of sources of the Gaussian distrib-
uted data. One limitation to this is that the Gaussian ART can
fit the variance along a dimension, but not covariance between
the dimensions. However, Williamson, 1996 [2] indicated that
separable Gaussian ART allows the Gaussian ART to have stor-
age and computational requirements similar to that of the Fuzzy
ART.



Each Gaussian ART category j is defined by M-dimensional
vector mean y; and variance o-?. The number of training sam-
ples it has coded is given by n;. Therefore, Gaussian ART
category requires 2M + 1 components to represent the M-
dimensional input I = {1y, ...., I}

When a new category is generated, I, = ¢;. When a category
J learns an input sample I, n;, pt; and o-?l. are updated using (7)—
(9) to represent the current sample vector.

ny:=ny+1 @)

pr = (1= ny g + 03 @®)

Jit 2 )

A =nhad g - 1) if ey > 1
B 0% otherwise

¥? is the variance initialisation parameter that determines the
isotropic spread in the feature space of a new category’s distri-
bution about its first sample.

4.2. Choice function

The choice function picks the most likely category for a given
input. A category’s likelihood is determined by the likelihood
that the input belongs to its distribution, as well as by the cate-
gory’s a priori probability used to define the category.

The Gaussian ART chooses the recognition category J, with
the maximum discriminant given its input I is given by (10) [2].

J=max{g;(I):j=1,.. N} (10)

N is the number of category activated.

log(2m)* pUI1 )PG) (11)
1< (i =)’
2 Zl ]O_i'

I .
e[ 195 + tosriy

gih =

P(j) = — 2 (12)
D=

Z?':lnf
4.3. Match function

The match function is based solely on the likelihood that the
input belongs to a category distribution, discounting its a prior
probability (13).

g = gy~ log(P(J) (13)
= log((2m)* p(Il)))

M 2 M
1 i—1; 1
- Iyt L,
24 o 2

eh

i=1

The Gaussian ARTMAP provides the prediction output that
is interpreted as picking the class with the highest net proba-
bility. Therefore all category predictions are summed to yield
the most likely net prediction of a class, rather than basing the
prediction on the maximum Fuzzy ART category.

In summary, the replacement of the minimax learning rule
with the Gaussian classifier can address the two weaknesses of
Fuzzy ARTMAP. Gaussian classifier that incorporates Gaussian
distribution, with their smoothness and generalisation proper-
ties, are also ubiquitous to real world conditions. This is be-
cause the distribution of information in the real world is the
result of the summation of independent random variables oc-
curring in the environment [2]. The energy management sys-
tems are a good example of the real world applications that are
susceptible to the randomness of a dynamic environment.

5. Building Energy Management System

There are a number of energy management systems (EMS)
developed with the incorporation of Fuzzy ARTMAP. Exam-
ples of this are that described in [5]-[13]".

This paper presents a similar case study to that presented in
[13]; however, limiting the analysis to just the boiler controls
for the building. The boilers are used to heat and maintain
the hot water temperature required by the centralised heating
system. The aim of the EMS is to ensure that the hot water
produced can maintain the building to its desired temperature
values.

The boiler controls are developed with the Fuzzy ARTMAP
and Gaussian ARTMAP, separately. Fuzzy ARTMAP and
Gaussian ARTMAP are compared to identify which of the two
is better at:

Function 1 Providing the required switching mechanism for
the boilers system: ON < OFF.

Function 2 Indicating the desired hot water temperature to be
maintained by the boilers.

Fuzzy ARTMAP and Gaussian ARTMAP are to provide these
two functionalities given the desired and actual building (in-
door) and environment (outdoor) temperatures.

5.1. Online learning

In common with other ANNs, the main disadvantage of
Fuzzy ARTMAP and Gaussian ARTMAP is that their black-
box characteristics limit the users’ ability to analyse the input-
to-output relationships established by the network. Due to
this limitation, an additional component is added to both the
Gaussian ARTMAP and Fuzzy ARTMAP. This component, la-
belled Supervisor in Figure 1 allows seamless interactions be-
tween the Gaussian ARTMAP and the Fuzzy ARTMAP and its
users. This will help promote transparency for the EMS.

In [13], the authors indicated the use of ARTMAP, but the functionalities
employed by the EMS are that of the Fuzzy ARTMAP



When new thermal and energy characteristics are required
by the building, the user will instigate the learning of the new
characteristics by presenting the new desired configuration to
the input of ART b (Figure 1). The presented supervisory infor-
mation corresponds to the input data provided to ART a.

The Supervisor will monitor the input presented to and
output provided by the Gaussian ARTMAP or the Fuzzy
ARTMAP. The Supervisor indicates when the Gaussian
ARTMAP or the Fuzzy ARTMAP has adapted its network to
the new input-to-output relationships. This seamless instigation
of learning allows the adaptation of the Gaussian ARTMAP or
the Fuzzy ARTMAP without any need to re-code the software
infrastructure. This will promote and ensure transparency of
the EMS.

Time

Energy
Profile

Room Tem'p.

Human Input:
Desired Room Temp. 7:|
Instigate learning —

Figure 1: Supervisor monitors the online learning for the EMS.
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mArtmap

5.2. Inputs to the ARTMAP
Inputs to the Fuzzy ARTMAP and Gaussian ARTMAP are:

1. Current date and time.

2. Or(t), Or(t—=1), Or(t=2), Or(t—3), Or(t —4). Oy is the
outdoor temperature. Or(f — x) is the outdoor temperature
at the previous x hour.

3. L), ,(t—1), I,(t-2), I,(t = 3), I,(t — 4). I, is the average
building y temperature. I,(t < x) is the average building
y temperature at the previous x hour. Average building y
temperature is calculated by averaging the measured tem-
perature values of allrooms in the building.

4. Wo(t), Wo(t—1), Wo(t—2); Wo(t—3), Wo(t—4). Wy is the
return water temperature from the building. Wy (7—x) is the
return water temperature from the building at the previous
x hour.

5. Wity Wit — 1), Wit = 2), Wit — 3), Wit — 4). W;is
the provided water temperature for the building W;(¢ — x)
is the provided water temperature for the building at the
previous x hour.

6. Instigate learning = 1: The user forces the Gaussian
ARTMAP and the Fuzzy ARTMAP to learn of a new hot
water temperature setting for the boiler. The Supervisor
(Figure 1) provides the output Learn = 1.

Instigate learning = 0: The user is happy with the provided
heat and the Supervisor provides the output Learn = 0.
When Instigate learning = 1, the user sets the hot water
temperature for the boilers, and learning is instigated for
Gaussian ARTMAP and the Fuzzy ARTMAP with the new
desired hot water temperature setting for the boilers.

(1)-(3) are the inputs indicating the energy demand. (4)—(5)
are the inputs indicating the energy resource. (6) is the human
interrupting signals to the Supervisor.

During the learning period (Instigate learning = 1), the
Gaussian ARTMAP or the Fuzzy ARTMAP takes in the user
desired temperature setting and learns of the desired switching
(Function 1) and hot water temperature setting for the boilers
(Function 2). The Supervisor sets the signal Learn = I and
helps provide the desired value for learning according to the
following rules:

If building temperature > desired building temperature
Then boiler switch = OFF;

Else if the building temperature <
(desired building temperature - 2°C)
Then boiler switch = ON;

The desired room (or building) temperature is set to 23°C.
The hot water temperature is set to 80°C when high heat de-
mand is required (for example, during the winter months); and
less (for example to be maintained at 2 X room temperature) if
there is lesser heat demand. Learning stops (Learn switches 1
— 0) when the building temperature = desired building temper-
ature after a suitable time period (six number of samples).

5.3. Online learning

In the experiments conducted for this paper, the Instigate
learning signal is set at 0. However, online learning does take
place:

If desired building temperature - 2°C > building temperature
or building temperature > desired building temperature
Then Learn = 1 and learning of new classification is
instigated.

During this learning period (Learn = I), Supervisor provides
the following supervisory inputs:

If building temperature > desired building temperature
Then boiler switch = OFF and
its desired hot water temperature setting is linearly reduced
until building temperature ~ desired building temperature.

If desired building temperature - 2°C > building temperature
Then boiler switch = ON and
the desired hot water temperature setting is linearly increased
until the building temperature ~ desired building temperature.

Learning stops (Learn = 0) when the building temperature ~
desired building temperature after six samples.

At the start of the simulation/experiment, both the Fuzzy
ARTMAP and the Gaussian ARTMAP have one classification:
boiler switch = ON, desired hot water temperature = 80°C and
Learn = 1. The inputs and outputs from the Fuzzy ARTMAP
and Gaussian ARTMAP are sampled and provided every 15
minutes. Fuzzy ARTMAP vigilance parameter p = 0.75. The
outputs produced are in response to the provided outdoor tem-
peratures between 5% March 2012 to 25" May 2012; omitting
the values between 22"¢ March 2012 09:00 to 24" March 2012
22:25 because no temperature data were collected during these
time. The outdoor temperature is depicted in Figure 2.
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Figure 2: The recorded outdoor temperature.

6. Results

6.1. Function 1: Providing the required switching mechanism

Four categories of switching outputs are produced by the
Gaussian and Fuzzy ARTMAP. The switching output are pro-
duced given the simulated building temperatures, boilers water
temperatures and output temperatures. The four are:

Blue o indicates that the Gaussian and Fuzzy ARTMAP have
created a new category that causes the boilers to be
switched ON. A new category is created when no recog-
nition category is activated. When this occurs, Learn =
1.

Cyan + indicates that the Gaussian and Fuzzy ARTMAP have
created a new category that causes the boilers to be
switched OFF, and Learn = 1.

Red ¢ indicates the boilers are to be switched ON, and the in-
puts have activated a recognised category or are part of a
learned category. Learn = 0.

Magenta = indicates the boilers are to be switched OFF, and

the inputs have activated a recognised category (Learn =
0).

Figures 3 and 4 show the results of the EMS. When compar-
ing the two figures, it shows Gaussian ARTMAP provides a bet-
ter categorisation of data (recognition categories) than that of
the Fuzzy ARTMAP. This is because, when utilising the Fuzzy
ARTMAP there are a large mix of:

1. New and learned categories, and
2. When the boiler switch has to be switched ON or OFF.

The large mix of new and learned recognition categories are
because, when the input falls near the boundary between two
learned categories, the inputs are considered as novel; and a
new recognition category is to be generated. In this instance,
the new recognition category is small in order to fit between the
two categories. This causes the category proliferation. Fuzzy
ARTMAP p = 0.75.

6.2. Function 2: Indicating the desired hot water temperature
for the boilers

Similar observations are seen when the Gaussian ARTMAP
and the Fuzzy ARTMAP were used to categorise and indicate
the desired hot water temperature to be produced and main-
tained by the boilers. By comparing the two figures in Fig-
ure 5, shows the Gaussian ARTMAP is better than the Fuzzy
ARTMAP because, similar to the previous function (Section
6.1), the Gaussian ARTMAP provides:

1. Variable desired weather temperature to suit the variable
demand of the building.
2. Lesser new recognition categories generated.

6.3. Summary of results

The figures shows the Gaussian ARTMAP has provided clear
distinctions when the boilers should be switched ON in order to
produce and maintain to the required hot water temperature and



Building

Temperature

(°Cc)
25—

24|

23—

22—
21—

*
2ol | T

19—

20
18—

0 10 20 30 40 50 60 70 80

Actual Boiler Water Temperature ( °C )

(a)
25—
24—
23—
22—
21—

20—

Building Temperature ( °C)

19—

18—

7 | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20

Outdoor Temperature ( °C)
(b) Rotating Figure (a)
Figure 3: The four categories produced by Gaussian ARTMAP, with clear decision boundaries are made that indicates when best to switch ON or OFF the boilers

(Function 1 described in Section 5). The definitions of the categories are described in Section 6.1.

7



25—

24|

23—

ok O

<& S <

22—

< C’(%

21—

20—

Building Temperature (°C )

o 9 0

QOutdoor
Temperature (°C)

40 50 60 70 g0 ©
Actual Boiler Water Temperature'( °C)

(a)

25—
24—
23—
22—
21—

20—

Building Temperature (°C )

17
\ \ \ \ \ \ \ \ \ |

20 18 16 14 12 10 8 6 4 2 .0}
Outdoor Temperature ( °C)

(b) Rotating Figure (a)
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when to switch OFF. The figures also show that the Gaussian
ARTMAP indicates the need for hot water temperature when
the output temperatures are low and the building temperatures
are below the desired building temperature values. This clear
distinction was not provided by the Fuzzy ARTMAP.

The clear decision boundary provided by the Gaussian
ARTMAP can produce better switching mechanisms for the
boilers system. This is shown when comparing the two fig-
ures in Figure 6, where the Gaussian ARTMAP provides lesser
switching ON < OFF of the boilers in comparison to the Fuzzy
ARTMAP; as well as better at achieving the desired building
temperature (Figure 7). The frequent switching provided by the
Fuzzy ARTMAP is because of category proliferation or the cre-
ation of small categories generated at the occurrence of novel
inputs. The high frequency of switching may, over time, reduce
the efficiency of the boilers.

Gaussian ARTMAP provides similar output for the building
with lesser switching frequency for the boilers system. This is
shown in Figure 6.

6.4. Varying the vigilance parameter p

Carpenter et. al., 1992 [1] and Williamson, 1996 [2] have
suggested that reducing the p values can prevent category pro-
liferation. Therefore, to investigate such effects, the build-
ing simulation model was simulated with Fuzzy ARTMAP
p =0.25p =0.5and p = 0.9. In the earlier Fuzzy ARTMAP
simulation, p = 0.75.

Table 1 shows the frequency of switching of the boilers with
varying p values. The table shows the higher the p value, the
higher the frequency of switching.

Table 1: Frequency of Switching for Different Values of Fuzzy ARTMAP p

Frequency =
P Number of change in states / Number of states
0.25 0.1714
0.50 0.1714
0.75 0.1714
0.90 0.1201
Gaussian
ARTMAP 0.0130

Furthermore, by comparing the switching outputs indicated
in Figures 8-9, demonstrates that the category proliferation can
be avoided, to an extent, by reducing the values of p. The fig-
ures show more new recognition categories are generated when
p =0.9, in comparison to p = 0.5.

7. Conclusion

There is a growing interest in the application of Fuzzy
ARTMAP for use in energy management system. However, as
this paper has demonstrated, there are weaknesses to the Fuzzy
ARTMAP. The Fuzzy ARTMAP is sensitive to noisy data and
category proliferations. The Gaussian ARTMAP was devel-
oped to address these weaknesses. This paper analysed which
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of the two ARTMAPs is better for use in building energy man-
agement system. Results indicated that despite reducing the p
values of the Fuzzy ARTMAP, Gaussian ARTMAP still pro-
vides better boiler controls than that of the Fuzzy ARTMAP.
Gaussian ARTMAP provides:

1. Clearer decision boundaries: clearer definition on-when to
switch ON or OFF the boilers,

2. Clearer defined desired hot water temperature values re-
quired by the building given its building<and environmen-
tal conditions (inputs), and

3. Lesser category proliferation.

This has resulted in lesser frequency of change in state (lesser
frequency of switching between ON ¢ OFF) provided by
the Gaussian ARTMAP; this is in' comparison to the Fuzzy
ARTMAP. Furthermore, high frequency of change in state,
change between the ON < OFF states, over time may reduce
the effectiveness and efficiency of the building energy manage-
ment system.

The Gaussian ARTMAP can also maintain greater consis-
tency with the desired objective of the system: to more accu-
rately maintain the desired building temperature. As a result
of the analysis conducted, the Gaussian ARTMAP is the better
choice for building energy management.
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Highlights

1. We created a UCLan Westlakes Samuel Lindow Building heat simulation model.

2. We created a Fuzzy ARTMAP Building Energy Management System with online learning.

3. We created a Gaussian ARTMAP Building Energy Management System with online learning.

4. We compared which of the two creates a more efficient Building Energy Management System.

5. Gaussian ARTMARP is better for use in Building Energy Management System with online learning.



