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Abstract — This paper investigates the choice of spatial weighting matrix in a spatial lag model framework. In the empirical
literature the choice of spatial weighting matrix has been characterized by a great deal of arbitrariness. The number of possible
spatial weighting matrices is large, which until recently was considered to prevent investigation into the appropriateness of the
empirical choices. Recently Kostov (2010) proposed a new approach that transforms the problem into an equivalent variable
selection problem. This article expands the latter transformation approach into a two-step selection procedure. The proposed
approach aims at reducing the arbitrariness in the selection of spatial weighting matrix in spatial econometrics. This allows for a
wide range of variable selection methods to be applied to the high dimensional problem of selection of spatial weighting matrix.
The suggested approach consists of a screening step that reduces the number of candidate spatial weighting matrices followed by
an estimation step selecting the final model. An empirical application of the proposed methodology is presented. In the latter a
range of different combinations of screening and estimation methods are employed and found to produce similar results. The
proposed methodology is shown to be able to approximate and provide indications to what the ‘true’ spatial weighting matrix
could be even when it is not amongst the considered alternatives. The similarity in results obtained using different methods
suggests that their relative computational costs could be primary reasons for their choice. Some further extensions and

applications are also discussed.
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1. Introduction

Models of ‘spatial’ dependence have recently become
increasingly popular in the regional science literature. In
spatial econometrics the spatial dependence is typically
represented via either spatial lag or spatial error specification.
The potential underlying causes and reasons for these two
distinct forms of spatial dependence are rather different and in
many cases explicitly distinguishing between them is of major
interest, particularly when a substantive understanding of the
underlying processes generating the spatial dependence
patterns is desired. Technically speaking however the spatial
lag representation is much more interesting for two main
reasons. First, ignoring spatial lag dependence has more
serious implications when inference is concerned. The
resulting estimates are typically inconsistent and biased. In
contrast, ignoring spatial error dependence leads to consistent,
though inefficient estimates, in the same manner as in any
other heteroscedastic model. Second, the spatial lag
representation nests within itself both spatial lag and spatial
error dependence in the sense that the spatial error model can
have an alternative representation that technically resembles

the spatial lag representation. In a linear model the spatial
error representation is a (testable) restriction on the spatial lag
model.

This paper looks at the choice of spatial weighting matrix.
When this is the focus of analytical attention, the question
about exact nature of spatial dependence is of secondary
importance and both forms can be subsumed in a spatial lag
type of specification (strictly speaking one may want to use
the more general so called spatial Durbin model specification,
but here we will ignore such technical issues and focus on the
spatial lag representation only). This is by no means
restrictive, since once the precise type of spatial weighting
matrix has been determined, one can go further into
investigating which form of spatial dependence is present, if
this is of interest. Why is the choice of spatial weighting
matrix important? If existing spatial lag dependence is
ignored the resulting parameter estimates will in general be
biased (see e.g. Anselin, 2002). But similarly if spatial lag
dependence is included when the true model does not exhibit
it, it is accounting for a general model misspecification, which
could also result in erroneous inference (McMillen, 2003).
One can also have the case where spatial dependence is
existing, but the wrong spatial weighting matrix is used. In
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such cases Griffith and Lagona (1998) show that the mean
estimates could be consistent (although under non-trivial
conditions), while the variance estimates will be typically
biased and inefficient thus impeding inference.

The paper proceeds as follows. The next section briefly
reviews the issues surrounding the spatial weighting matrix in
terms of significance, alternative specifications etc. Then the
general background of the proposal is discussed. This
describes the motivation and the philosophical basis for the
proposed methodology. The actual methodology is then
presented clarifying the technical details and the reason
behind their choices. An empirical application of the proposed
methods is presented. Finally the obtained results are
presented and interpreted and some conclusions and possible
future extensions are briefly outlined.

2. The Spatial Weighting Matrix

The specification of spatial dependence via a spatial
weighting matrix is a convenient way to describe theoretical
or a priori knowledge and understanding of the underlying
structure generating the ‘spatial’ dependence between
different economic agents and units of analysis. There are
different approaches to specifying a spatial weighting matrix
(see Getis, 2009 for an overview). In simple words defining a
spatial weighting matrix involves two choices, namely a
neighbourhood scheme and spatial weights. The
neighbourhood scheme involves determination of which units
of analysis are linked and which are not. When units are
economic agents this means the decisions of which agents are
to be included in the objective functions of other agents. A
social network structure could for example be used to infer the
neighbourhood scheme. The weighting scheme on the other
hand defines the strength of these links. The weighting
scheme is based on some distance metrics, which could be
spatial, economic distance, or in the case of the social network
example a social distance (e.g. family, close friends,
acquaintances etc.). The weighting scheme takes the distance
metrics and combines it in order to derive the strength of the
impact each unit has on another unit.

In some applications some of the above choices may be
logically predetermined, e.g. the nature of the problem may
suggest the neighbourhood scheme and/or equal weights
could be a logical choice. In most cases however this choice is
far from trivial. The choice of spatial weighting matrix in
empirical applications has been subject to some arbitrariness.
This arbitrariness presents a serious problem to the inference
in such models since estimation results have been shown to
often critically depend on the choice of spatial weighting
matrix (Anselin, 2002; Fingleton, 2003).

For identification purposes the spatial weighting matrix
needs to be exogenous (Manski, 1993). One reason for the
popularity of spatial weighting matrices based on
geographical distances is the fact that their exogeneity is
automatically ensured. Furthermore very often spatial

distances may reasonably well approximate the underlying
‘true’ metrics, which may be unobservable or unavailable. For
example often spatial distance can approximate the strength of
social relationships. Therefore in the absence of direct
measurement of the underlying relationship, the spatial
distances could be used. Note however that in such an
approximation process even if one knows the exact form of
the linkages, as expressed in the underlying unavailable
metrics, translation into spatial distances (or any other
alternative metrics system) changes matters. The translation
may effectively break down the theoretical spillover
definition. Hence the uncertainty about what the spatial
distances measure introduces additional uncertainty in the
process of specifying an appropriate spatial weighting matrix.

The issue of spatial weighting matrix has been outstanding
for considerable amount of time. There have been a number of
proposals how to alleviate the problem. A major stumbling
block in identifying an appropriate spatial weighting matrix is
that the number of potential alternatives is extremely large.
This puts a great computational burden on any method
designed to deal with it.

Kooijman (1976) proposed to choose the spatial weighting
matrix by maximizing Moran’s coefficient. In a more general
vein this has led to the practice of choosing spatial weighting
matrix maximising alternative spatial dependence statistics.
Research into reducing the degree of arbitrariness in spatial
weighting matrix choice has been particularly active in recent
years. One could classify this strand of research into two main
types. First, new and more flexible ways to specify the
neighbourhood and/or the weighting schemes have been
proposed. The second type of proposals deals with essentially
selecting the spatial weighting matrix either implicitly or
explicitly from a pre-defined set of candidates. This paper
falls in this second category. Bhattacharjee and Jensen-Butler
(2005) proposed estimating spatial weighting matrix
consistent with the data distribution, but their approach only
applies to the spatial error model. Lima and Macedo (1999)
proposed an interesting procedure dealing with estimating the
weights decay and thus the spatial weights matrix with a
predefined ‘soft’ neighbourhood (soft in the sense that the
weight decay can exclude some observations from the
neighbourhood definition). When we have an explicit set of
competing spatial weighting matrices, LeSage and Parent
(2007) proposed a Bayesian model averaging procedure for
spatial model which incorporates the uncertainty about the
correct spatial weighting matrix while LeSage and Fischer
(2008) expanded this approach to select a spatial weighting
matrix. Holloway and Lapar (2007) used a Bayesian marginal
likelihood approach to select a neighbourhood definition
(cut-off points for the neighbourhood), but one can consider
their approach as a general model selection approach, which
could be applied to any other set of competing models.

Recently Kostov (2010) proposed applying a
component-wise boosting algorithm to a reformulated spatial
weighting matrix selection problem. Kostov’s (2010)
proposal is computationally efficient in that it can deal with



22 Econometrics (2013) 20-30

thousands of alternatives. We build upon Kostov’s (2010)
proposal and extend it by applying alternative variable
selection methods. The paper is organised as follows. The
next section reviews the proposal of Kostov (2010). Then we
outline our method and its justification. Finally we apply the
proposed methods to the same data as in Kostov’s (2010)
original application in order to compare the results.

3. Background and Motivation

Kostov’s (2010) approach implements a component-wise
boosting counterpart to the spatial two-stage least squares
approach of Kelejian and Prucha (1998). The latter uses the
spatially lagged independent variables as instruments for the
spatially lagged dependent variable. Thus one can simply
project the spatially lagged dependent variable in the vector
space of the instruments and use the transformed in this way
variable instead of the original one. The novelty of Kostov’s
(2010) approach consists in applying a variable selection
method in the second step. In simple words the first step in the
spatial two-stage least squares approach (Kelejian and Prucha,
1998) can be viewed as instrumental variables transformation
applied to a spatially lagged dependent variable. Kostov
(2010) proposes applying the above transformation to all
candidates for spatial weighting matrices to be considered in
an empirical application. Then treating the first step as given,
the spatial weighting matrix selection problem becomes
equivalent to a variable selection problem, defined with
regard to the transformed spatially dependent variables. In a
parametric modelling framework, the latter variable selection
problem can be dealt with standard tools. Kostov (2010)
further proposes component-wise boosting for this particular
purpose, partly motivated from the fact that the potential set of
spatial weighting matrices can be very large thus requiring
methods able to carry out variable selection in an ultra high
dimensional case at a low computational cost. As already
noted the essence of Kostov’s (2010) proposal is not so much
the component-wise boosting method, but rather the
transformation of the spatial weighting matrix selection into a
variable selection problem. Therefore any other variable
selection methods could be used in the second step. A popular
class of variable selection methods are penalisation methods,
such as the nonnegative garrote (Breiman, 1994), LASSO
(Tibshirani, 1996), SCAD (Fan and Li, 2002), LARS (Efron,
et al. 2004), the bridge estimator (Huang et al., 2007) and the
Dantzig selector (Candes and Tao, 2007). See Kostov (2010)
for a brief overview of these methods.

In this paper we will consider the penalisation approaches.
The reasons for this are briefly outlined below. A desirable
property of any variable selection method is the so called
‘oracle property’ (Fan and Li, 2001, 2006). In simple words
an estimator is said to possess the oracle property when it is
both consistent in terms of variable selection and efficient in
estimation in the sense that the estimator’s asymptotic
variance matrix is essentially the same as this of the ‘oracle’

estimator (i.e. the estimator obtained by knowing which
variables have to be selected). Fan and Li (2001, 2006)
provide detailed technical discussion on the oracle property
and we will not discuss it here in any detail. Kostov (2010)
claims that the oracle property is not necessary in justifying
his approach. The reason for this seems rather intuitive. The
proposed method is a two-step equivalent to the spatial
two-stage least squares. It is however computationally
complicated to obtain covariance estimates for the overall
approach. Owing to this Kostov (2010) suggested that the
methodology has to be used to obtain the final model that will
need to be estimated by the standard spatial two-stage least
squares approach. Hence by differentiation between the
consistency (in terms of variable selection) and efficiency (in
the oracle sense) it looks like only consistency is required,
since the results will after all be obtained by applying the
‘oracle’ estimator.

Unfortunately the above logic suffers from an important
drawback. A variable selection method that does not possess
the oracle property may fail do identify the oracle model.
Being consistent in terms of variable selection means that the
variables that belong to the model will be retained.
Nevertheless this does not guarantee that a number of
irrelevant variables would not be retained too. In order to
better explain the intuition behind this, consider the following.
The variable selection methods would typically need a
criterion to define how to select a crucial parameter (the
number of boosting iterations in boosting or the value of the
penalty parameter in penalisation approaches). This is
designed to avoid over-fitting. Conventional methods, such as
e.g. cross-validation would typically select
over-parameterised models (see e.g. James and Radchenko,
2009). The reason for this is that such methods are constructed
with fixed designs in mind while in variable selection
problems this is no longer the case. As a result the basic
variable selection algorithms need to be modified to account
for this. The SCAD method uses two penalty parameters to
correct for this problems, the adaptive lasso (Zou, 2006)
applies adaptive weighting to the classical lasso estimates, the
relaxed lasso (Meinshausen, 2007) interpolates between two
estimates to attenuate the problem and the double Dantzig
(James and Radchenko, 2009) applies similar logic. Since we
are interested in correctly identifying the important variables
in such setting, it is desirable that our variable selection
methods possess the oracle property. To be more precise, in
this particular setting we are not interested in the oracle
property, but in the rather weaker ‘persistency’ property
(Greenshtein and Ritov 2004). Nonetheless the oracle
property would be desirable. Another argument for it would
be the fact that the set of candidate spatial weighting matrices,
that needs to be constructed by the researcher is not
guaranteed to contain the ‘true’ one. In this case the results
would approximate the unknown ‘true’ spatial weighting
matrix. When such approximations are involved, the
prediction properties of the model become important and
therefore the stronger oracle property could be useful in
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achieving efficient approximation.

4. Methodology

The discussion above does not imply that methods that do not
possess the oracle property are not useful. Even without the
oracle property, the variable selection consistency ensures
that the relevant variables are retained within the set of
predictors. Therefore any consistent variable selection
methods can still be employed as screening methods to greatly
reduce the set of candidate variables. When the latter set is
very large, as it is in the case of spatial weighting matrix
choice, this is an advantageous development. Another
important point of consideration is that the rate of
convergence of variable selection algorithms depends on the
dimension of the problem. It is therefore advantageous if the
initial problem is pre-screened in eliminating irrelevant
variables to reduce its dimensionality. Such a strategy will
bring two distinct types of advantages. The first is the
improvement in the rate of convergence of the employed
variable selection algorithm, which will improve the results.
The second is more practical. Whenever the screening method
is a simple and computationally fast, reducing the
dimensionality of the problem will considerably speed up
estimation when compared to a direct application of variable
selection to the larger problem. Therefore we suggest
implementing the variable selection task in two steps, namely
a screening step that eliminates (most of the) irrelevant
variables (in this case candidates spatial weighting matrices)
followed by a variable selection procedure that obtains the
final model. Below we briefly discuss what particular
methods could be implemented at each of these steps.
Without entering into too much technical detail we can
state that most of the variable selection algorithms mentioned
in the previous section can be used as screening methods.
From a practical point of view however it is advisable to use
simple and computationally cheap methods. The screening is
to be applied to the whole problem and more complicated
methods could be computationally demanding. The general
idea behind screening is rather simple. Screening methods
reduce the dimensionality of the problem and then a variable
selection method possessing the oracle property can be used
to infer the final structure. This approach has several
important advantages. First, the dimension reduction allows
one to be able to use methods that would otherwise have been
infeasible with the original problem. Take for example the
adaptive lasso method. It is not applicable when the number of
variables exceeds the sample size, but when screening that
reduces the number of candidate variables so that it is lower
than the sample size is carried out, it can be implemented. The
other advantage is that once irrelevant variables have been
filtered out, the resulting estimator will have better
convergence rate compared to being applied to the original
unrestricted problem. Take for example the Dantzig selector,
the convergence of which is a function of the relative (with

regard to the sample) size of the problem. Screening will
drastically increase its converge rate and hence result in more
reliable inference (see Fan and Lv, 2008 for detailed
discussion). Finally, since most consistent variable selection
methods possess screening power, irrespective of whether
they are characterised by the oracle property or not, it would
be advantageous to combine different types of such methods
in a consecutive matter.

The screening idea originates from Fan and Lv (2008)
who proposed and justified (by establishing its theoretical
properties) the so called Sure Independence Screening
method designed to reduce the dimensionality of the variable
selection problem. The ISIS method of Fan and Lv (2008)
which is an iterative version of the basic SIS is numerically
similar to component-wise boosting, but is less greedy. Wang
(2009) established the screening properties of the classical
forward regression, which can be viewed as limiting greedy
learning case of the boosting algorithm (achieved with the
maximum updating factor of unity). Taking the above
connections into considerations, as well as the general links
amongst different variable selection algorithms (see e.g.
Meinshausen et al, 2007) it would be advantageous to
combine different screening and variable selection methods.
A particular concern in the present application is the fact that
by construction the variables created using a set of candidate
spatial weighting matrices, following the proposal of Kostov
(2010) will exhibit considerable correlation. The other
possible complication is that we cannot be sure that the ‘true’
spatial weighting matrix is in the set of alternatives that is
constructed to investigate the problem. This means that often
our search for an appropriate spatial weighting matrix will
yield an approximation. This suggests that the estimation
problem we are solving is likely to be characterised by a
relatively low signal to noise ratio, which will impact
negatively on the performance of most screening methods.
Wang (2009) presents some extensive numerical simulations
comparing SIS, ISIS, LARS (least angle regression) and
forward regression implemented alone or followed by a
consistent variable selection method (adaptive lasso or
SCAD). Their results show that no method clearly dominates
the others.

Another important consideration is that by their nature
screening methods have to be very simple (see the discussion
on the paper by Fan and Lv, 2008 in the same issue). There is
obviously some trade-off here since ‘better’ methods should
be able to achieve a greater reduction in the dimension of the
initial problem (i.e. to eliminate more irrelevant variables) and
hence reduce the computational requirements for the
consequent variable selection methods, as well as improve its
(theoretical) convergence rate. In highly correlated designs
that will typically characterise the spatial weighting matrix
selection problem as reformulated in Kostov (2010) too
simple methods or methods that are not ‘robust’ with regard to
the correlated design, could be inconsistent. Hence it could be
useful to compare the relative performance of different such
methods. Typically such comparisons are carried out on
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simulated datasets. In this case we will take a slightly different
approach and implement such comparison on a real dataset.

We will consider the following candidates for screening
methods. First we will use the component-wise boosting
method. Since this is the method that have been implemented
in the original proposal of Kostov (2010) it should allow
direct comparison with his results, particularly if the same
dataset is employed. Following Kostov (2010) we will use the
g-prior Minimum Description Length (gMDL) of Hansen and
Yu (2001) as stopping criterion. Kostov (2010) shows that it
compares favourably to different forms of cross-validation at
a fraction of their computational costs and hence this choice
allows us to obtain a fast and reliable screening method. We
could have used a more traditional criteria, such as AIC
resulting in larger models to be submitted to the second step in
our approach, but we felt that ensuring direct correspondence
with Kostov’s (2010) approach which we are building upon is
desirable. The next screening method is the forward
regression with AIC as stopping criterion. This is the best
known classical method for dimensionality reduction and as
shown in Wang (2009) it possesses screening power. The
other screening methods we consider include the LASSO
(Least Absolute Sum of Squares Operator, see Tibshirani,
1996), forward stagewise regression and LARS (Least Angle
Regression, see Efron et al.,, 2004)) with Mallow’s Cp as
stopping rule. The full regularisation path for the latter three
methods can be easily computed by modifications to the
computationally efficient lars algorithm (Efron et al., 2004)
and therefore these are all fast and suitable for variable
screening purposes. Finally mainly for comparison purposes
we will also implement a more complicated screening method,
mainly the relaxed lasso (Meinshausen, 2007) with
cross-validation used to select the regularisation (i.e. penalty
and relaxation parameter) parameters. This is obviously a
more demanding method both in terms of complexity and
computational requirements. Since however it is a
generalisation of the lasso it can be useful to consider it in
comparative perspective and see whether the simplicity in the
proposed screening methods does not come at a price.

Furthermore we consider the methods to be used on the
screened data. Firstly, we use two generalisations of the
Dantzig selector, namely the Gauss-Dantzig (Candes and Tao,
2007) and the Double Dantzig (James and Radchenko, 2009).
The other method is the adaptive lasso (Zou, 2006). Finally
we implement two non-convex penalisation methods namely
SCAD (smoothly clipped absolute deviation, Fan and Li,
2001) and MCP (minimax concave penalty, Zhang 2007). All
the above methods possess the oracle property and therefore
are suited for implementation in the second step of our
approach.

5. Study Design and Implementation
Details

For comparative purposes we follow closely the design

outlined in Kostov’s (2010) study. This involves using the
same dataset, model specification as well as set of competing
alternative spatial weighting matrices. Since all these are
discussed in some detail in Kostov (2010) we will only briefly
sketch them here.

The corrected version of the popular Boston housing
dataset (Harrison and Rubinfeld, 1978) is used. It consists of
506 observations and incorporates some corrections and
additional latitude and longitude information, due to Gilley
and Pace (1996). This dataset contains one observation for
each census tract in the Boston Standard Metropolitan
Statistical Area. The variables comprise of proxies for
pollution, crime, distance to employment centres,
geographical features, accessibility, housing size, age, race,
status, tax burden, educational quality, zoning, and industrial
externalities. A detailed description of the variables, to be
used in this study is presented in table 1.

Table 1. Description of variables

Variable Description

MEDV Median values of owner-occupied housing in thousands
of USD

LON Tract point longitude in decimal degrees

LAT Tract point latitude in decimal degrees

CRIM Per capita crime

7N Proportion of residential land zoned for lots over 25,000
sg. ft per town

INDUS Proportion of non-retail business acres per town

CHAS An indicator: 1 if tract borders Charles River; 0 otherwise
Nitric oxides concentration (parts per 10 million) per

NOX
town

RM Average number of rooms per dwelling

AGE Proportions of owner-occupied units built prior to 1940

DIS Weighted distance to five Boston employment centres

RAD Index of accessibility to radial highways per town

TAX Property-tax rate per USD 10,000 per town

PTRATIO  Pupil-teacher ratio per town

B Calculated as 1000*(Bk - 0.63)*2 where Bk is the
proportion of blacks

LSTAT Percentage of lower status population

The basic model as implemented in Kostov (2010) is as
follows:

log(MEDV)= f {CRIM, ZN, INDUS, CHAS, NOX"2,
RM"2, AGE, log(DIS), log(RAD), TAX, PTRATIO, B,
log(LSTAT)}

A linear functional form specification is used and the latter
is augmented with alternative candidate spatial weighting
matrices, constructed using the longitude and latitude
information. The set of alternative spatial weighting matrices
is constructed using inverse distance raised on a power
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weights specification and nearest neighbours definition of the
neighbourhood scheme

We will adopt the naming conventions used in Kostov
(2010) combining the codes for the neighbourhood definition
and the weighting scheme to refer to the corresponding spatial
weighting matrix and the resulting additional variables to be
included in the boosting model. All these variables are named
using the following convention: nxwy, where x is the number
of neighbours and y is the weighting parameter (which is the
inverse power of the weight decay). For example the spatial
weighting matrix with the nearest 50 observations as
neighbours and inverse squared distance weights as well as
the resulting transformed variable will be denoted as n50wz2.
We employ all values for number of neighbours from 1 to 50
and evaluate w in the interval [0.4, 4] using increments of 0.1.
In simple words this means that we are combining 50 possible
neighbourhood definitions with 37 alternatives for the
weighting parameter resulting in 1,850 alternative spatial
weighting matrices to be considered simultaneously.

Kostov (2010) projects the spatially weighted dependent
variable into the column vector space of the spatially
weighted independent variables, by taking the fitted values
from a least-squares regression to obtain the transformed
variables, named according to the above convention. Here we
built upon that strategy and instead of applying a single
variable selection method in the second step we use
consecutive application of two such methods. The first is to be
used as a screening method while the second (which in this
case would be a method possessing the ‘oracle’ property) will
fine tune the selection results.

Table 2. Screening and estimation methods used

Code Method

Screening step

BS Component-wise boosting
FR Forward regression

LR LARS

LS LASSO

RL Relaxed LASSO

FS Forward stagewise

Estimation step

GD Gauss-Dantzig
DD Double Dantzig
ALASSO Adaptive lasso
MCP MCP

SCAD SCAD

To simplify discussion from here on, unless specified
otherwise, under first and second step we will understand the

screening and the consequent estimation step. Given the large
number of combinations of different estimation methods, for
labeling purposes, it is convenient to adopt the following
convention. We will use short codes to denote each of the
used methods. Then each combination will be referred to as
X_Y, where X will be the code for the screening method and
Y the code for variable selection method implemented on the
dataset reduced by the corresponding screening method. The
corresponding codes are shown in Table 2. The regularisation
parameters for all estimation step methods and for the relaxed
lasso are chosen by 5-fold cross-validation. The non-convex
penalty approaches (MCP and SCAD) involve two penalty
parameters. In order to reduce the computational load
(particularly due to the non-convexity of the optimization
problem) we follow a commonly used in empirical
applications convention and fix the second penalty parameter
to 3.7. See e.g. Fan and Li (2001) for discussion on the
theoretical reasons for this particular choice.

6. Results

Before we proceed to the detailed results, we will briefly
review the results of Kostov (2010) who’s design we follow.
Table 3 shows the coefficients corresponding to the spatial
weighting matrices retained in the model implementing the
boosting approach of Kostov (2010), which in essence is our
BS screening method, with gMDL stopping rule and updating
parameter of 0.3, which is in the middle of the commonly used
range of [0.1, 0.5].

Table 3. Boosting estimation results for the spatial weighting
matrices

Variable Coefficient
n3wl.2 0.0374
n3wl.3 0.0061
n6wo0.4 0.1877
n6wo.5 0.0109
n6wo.6 0.0100
n6wo.7 0.0091
n6wo.8 0.0099
n6wo.9 0.0113

néwl 0.0069

Kostov (2010) only presents a list of the retained spatial
weighting matrices and notes that since all spatial weighting
matrices from néw0.4 to n6éwl are selected, using a single
spatial weighting matrix by centring over the range should
reasonably well approximate the true underlying structure.
Taking into account the actual contributions of the retained
spatial weighting matrices however suggests that néw0.4
should have been the preferred option, since on one hand it
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has by far the largest (in magnitude) coefficient and on the
other it is actually at the centre of the ‘mass’ distribution for
the retained spatial weighting matrices.

Another notable feature of the present analysis is that
following the discussion of Kostov (2010) one could from the
very outset suspect that the ‘true’ spatial weighting matrix is
not in the set of alternatives included in the study design. This
however provides a further insight into this how the proposed
approach can approximate this unknown spatial weighting
matrix. Kostov (2010) speculated that a spatial weighting
matrix based on contiguity definition of the neighbourhood
and some form of common border weighting (using the tracts)
is what is probably most consistent with the obtained results.
Although as we show above the original results of Kostov
(2010) need to be reconsidered, the modified results (i.e.
using n6w0.4) are still consistent with this conjecture.

Another important point to address is why did not we try
the original screening approach, i.e. the SIS and ISIS methods
of Fan and Lv (2008). We actually implemented the latter, but
the results were disappointing. In simple words the resulting
models excluded virtually all main variables (i.e. variables
other than the transformed spatial weighting matrices) and
correspondingly the results yielded an approximation to the
correlation structure over transformed spatial weighting
matrices. Furthermore the exclusion of the main variables
occurred during the screening step and therefore the
consequent estimation methods could not recover meaningful
model. The implicit simplicity of the SIS and ISIS methods in
this case could not deal with the highly correlated nature of
the study design.

Table 4. Number of retained variables by screening
method

Code Method Number of retained variables

BS Component-wise boosting 21
FR Forward regression 43
LR LARS 332
LS LASSO 144
RL Relaxed LASSO 20
FS Forward stagewise 1164

We now describe the results. Table 4 presents the size of
the reduced set of covariates (i.e. counting both ‘main’
variables and ‘transformed’ spatial weighting matrices),
following the implementation of a particular screening
method. One should note that the degree to which different
methods reduce the dimensionality of the original problem
depends on the stopping rule and hence the results in table 4
should not be viewed as comparison between different

screening methods in general, but rather as a setting in which
to evaluate the performance of the consequent estimation step
methods. Furthermore the main purpose of the screening step
is not maximum reduction, but considerable reduction that
avoids as much as possible the danger of falsely omitting
important variables. For this reason for example the AIC is
implemented to stop the forward regression, rather than e.g.
the gMDL which would have yielded greater reduction in the
size of the problem. The greater reduction however could
have risked dropping the most appropriate spatial weighting
matrix.

Both boosting (see also Kostov 2010 for an indication
about the relative number of selected variables under
alternative stopping rules) and forward regression have
managed to considerably reduce the size of the problem. The
only other screening method that achieved similar reduction is
the relaxed lasso, but it is considerably more demanding in
computational terms, particularly since cross-validation is
needed to select the regularisation parameters. LARS and
LASSO also reduce the dimensionality below the sample size
(of 506) and hence can be useful as screening methods. At
first sight it looks like LARS and LASSO are retaining too
many variables and hence might impede the consequent
estimation methods. Note however that in this particular case
the cross-validated relaxed lasso chose a relaxation parameter
of 1 (see Meinshausen, 2007 for details), which effectively
reduces the relaxed lasso to the conventional LASSO
estimates. Therefore we can view in this particular instance
the relaxed lasso as LASSO, where cross-validation is used
(instead of the Mallow’s Cp) to select the penalty. Moreover
here the cost of omitting a relevant variable in the screening
step is higher that the potential advantages in speeding
estimation in the next step. Furthermore avoiding costly
cross-validation in the first step (when the dimensionality is
considerably higher) more than offsets the additional
computational cost incurred when dealing with a larger
problem in the second step. Finally the forward stagewise
regression only achieves moderate reduction in the size of the
problem, which remains above the sample size. As above a
different stopping rule could have been employed but this
would have compromised the speed of the proposed
methodology.

We now proceed to the actual estimation results. These are
presented in Tables 5-7. To facilitate discussion we have
adopted the following ordering for the results. The results
from non-convex second step (i.e. estimation) methods are
presented separately in Table 7 with results ordered by
estimation (i.e. second step) method. Table 5 and 6 present
the results from the other methods, ordered by screening
method. To simplify the presentation we have omitted the
intercept from all results. Each of the above tables contains
the main variables in the same order followed by néwo0.4.
Three of the main variables, namely ZN, INDUS and AGE are
not chosen by any of the applied methods and for this reason
we do not include them in the result tables. The rest of the
tables contain other spatial weighting matrices retained by the
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corresponding method. The latter are specific to each table,
for reasons to become clear during the discussion.

First of all, the results obtained by the different methods
are broadly speaking comparable. The spatial weighting
matrix that best fits the model is n6w0.4, conforming to the
conjecture of Kostov (2010). Moreover in about half of the
methods used this is the only spatial weighting matrix, while
in most other cases the additional retained spatial weighting
matrices have rather small contributions. There are some
small differences between different methods in that some of
them deselect some of the main variables. We will not
explicitly comment on these differences unless they are
essential in explaining what is happening with regard to the
main focus of the study, namely the choice of spatial
weighting matrix. Hereafter we will refer to the model with
n6w0.4 as the only spatial weighting matrix as the default
model.

Boosting performs very well as screening method,
producing results which are consistent amongst the different
second step methods. This should come as no surprise since
the boosting application has resulted in a rather small set of
candidate spatial weighting matrices. The only deviation from
this rule is BS_MCP case which selects n6w0.9 instead of the
n6w0.4 spatial weighing matrix. Interestingly the MCP
algorithm selects n5w0.8 or n6w0.9 in four out of the six
pre-screened sets (see table 7), which suggest that this
‘preference’ for slightly higher weighting parameter could
have something to do with the algorithm itself. The
non-convex nature of the algorithm which can have at least
three distinct implementations as well as the issue what type
of cross-validation would be most appropriate for the problem
in hand are some issues that may require some additional
attention. Nevertheless even with the slight difference in the
BS_MCP result, the results obtained using boosting as
screening method conform to the expectations.

Forward regression also performs very well. Similar
results are obtained across the whole range of second step
methods (see tables 5 and 7). The only two methods that
deviate from the default model are FR_ALASSO which
selects n16w0.7 in addition to n6w0.4, and FR_MCP, where
n6wO0.8 is selected instead. These deviations can be viewed as
‘spreading’ the spatial dependence in comparison to the
default model because they imply in simple terms an
additional effect characterized by more neighbours but also
larger weight decay. In this way such effects could be
consistent with additional (possibly of non-spatial origin)
heteroscedasticity present in the default model. We will
revisit this point later.

The application of LARS as screening method yields very
similar results. The LR_GD ‘augments’ the default model
with a very small contribution from n9wO0.4, while
LR_ALASSO  drastically increase the  additional
‘contributions’ by including n16w08 and n33w0.4. The
SCAD and MCP replace n6w0.4 with respectively n6w0.8
and n6w0.9. Again this suggests some ‘spreading’ of the

pattern of spatial dependence.

As explained earlier in this particular application the
relaxed lasso reduces to ordinary lasso (with cross-validation
for penalty choice rather than Mallow’s Cp). The use of
cross-validation in place of simple selection criterion, does
not seem to affect the results too much. LS _DD and LS_DD
do not select the default spatial weighting matrix but choose
n5w0.4 which is virtually the same. The difference amongst
the lasso and relaxed lasso screened models are essentially
due to the second step methods. Although such difference do
not change the conclusions about the nature of the spatial
weighting matrix, they are somewhat more substantive with
regard to the main variables and this is certainly an issue that
deserves more thorough investigation. Perhaps surprisingly
SCAD and MCP produce identical estimates for the lasso and
relaxed lasso screened model essentially coinciding with the
default model, which may prompt closer look at these.

Forward stagewise regression did not manage to
sufficiently reduce the problem size. This means that
FS_ALASSO cannot be implemented because the number of
variables retained by the FS exceeds the sample size and
consequently initial weights for the adaptive lasso algorithm
cannot be computed. For other second step methods however
the corresponding algorithms can be implemented and the
results are not substantively different from those obtained
using the other methods.

It is worth mentioning that the application of SCAD and
MCP in the second step produces remarkably similar results
regardless of the screening method used. This could be a
property of the methods themselves, but given the implicit
difficulties in optimizing non-convex objective functions and
the already mentioned fact that we fixed the second penalty
parameter, it could also be due to the particular application.

In order to elaborate on the earlier point about ‘spreading’
of the spatial dependence, consider Table 8 that lists the
estimation results from spatial two stage least squares
estimation of the default model (excluding the three main
variables that are not selected by any of the used methods).
Standard errors produced without and with heteroscedasticity
correction are shown together with their ratio. These results
are indicative of considerable residual heteroscedacticity. We
will not elaborate on the possible reasons for this, since it may
be due to the approximation that the default spatial weighting
matrix provides for the ‘true’ one. Furthermore it may also be
due to the functional form assumptions employed here. The
presence of such heteroscedasticity however can and as
already discussed does to some extent affect the results, which
is to be expected since all methods considered in this study,
whether used for screening or estimation purposes are
ultimately based on least squares and hence will be affected
by the presence of heteroscedasticity. Note furthermore that
the relative effect of the heteroscedacity is larger for the
spatial dependence parameter, which in this particular case is
also to be expected given that it can be viewed as an
approximation.
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Table 5. Estimation results (part 1)
BS_DD BS_.GD  BS_ALASSO  FR_DD FR_.GD FR_ALASSO LR_DD LR_GD LR-ALASSO
CRIM -0.0098 -0.0101 -0.0076 -0.0098 -0.0101 -0.0086 -0.0098 -0.0101 -0.0087
CHAS 0.0283 0.0332 0.0283 0.0332 0.0282 0.0329
NOX~2 -0.3561 -0.4059 -0.3561 -0.4059 -0.2295 -0.3551 -0.4060 -0.2863
RMA2 0.0069 0.0065 0.0066 0.0069 0.0065 0.0067 0.0069 0.0065 0.0067
log(DIS) -0.1495 -0.1580 -0.0940 -0.1495 -0.1580 -0.1497 -0.1493 -0.1584 -0.1564
log(RAD) 0.0307 0.0334 0.0057 0.0307 0.0334 0.0542 0.0306 0.0333 0.0663
TAX 0.0000 -0.0002 -0.0003
PTRATIO  -0.0124 -0.0152 -0.0124 -0.0152 -0.0090 -0.0123 -0.0152 -0.0115
B 0.0001 0.0003 0.0003
log(LSTAT)  -0.2643 -0.2765 -0.2733 -0.2643 -0.2765 -0.2759 -0.2641 -0.2768 -0.2725
néwo.4 0.5003 0.4655 0.5376 0.5003 0.4655 0.3770 0.5011 0.4544 0.2873
nowo.4 0.0120
n16w0.7 0.1056
n16w0.8 0.2690
n33w0.4 -0.1037
Tabale 6. Estimation Results (part 2)
LS_DD LS_GD LS-ALASSO RL_DD RL-GD RL_ALASSO FS DD FS_GD
CRIM -0.0093 -0.0095 -0.0082 -0.0094 -0.0096 -0.0083 -0.0100 -0.0101
CHAS 0.0283 0.0326 0.0248 0.0291 0.0317 0.0323
NOX"2 -0.2565 -0.2826 -0.0678 -0.2481 -0.2743 -0.1286 -0.3714 -0.4109
RM”2 0.0078 0.0075 0.0069 0.0074 0.0071 0.0068 0.0069 0.0065
log(DIS) -0.1348 -0.1412 -0.1130 -0.1372 -0.1436 -0.1268 -0.1507 -0.1601
log(RAD) 0.0173 0.0175 0.0250 0.0196 0.0198 0.0389 0.0309 0.0331
TAX -0.0001 -0.0002
PTRATIO -0.0040 -0.0055 -0.0132 -0.0154
B 0.0002 0.0002
log(LSTAT) -0.2530 -0.2655 -0.2709 -0.2570 -0.2693 -0.2739 -0.2689 -0.2793
n6wo.4 0.5107 0.5125 0.4982 0.4693 0.4789 0.4765
nlw0.4 -0.0263
n2wo.4 0.0613 0.0521 0.0454 0.0353
n5w0.4 0.4785 0.4635
now0.4 0.0009 0.0104
n16w0.6 0.0272
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Tabale 7. Estimation results (part 3)

BS_SCAD FR_SCAD LR_SCAD LS-SCAD RL_SCAD FS SCAD BS MCP FR_MCP LR_MCP LS _MCP RL MCP FS_MCP
CRIM  -0.0092 -0.0092 -0.0091 -0.0092 -0.0092 -0.0092 -0.0091 -0.0091 -0.0091  -0.0092  -0.0092  -0.0091
CHAS 0.0023
NOX~2  -03140 -0.3145 -0.3172 -0.3140 -0.3140 -0.3140 -0.3192 -0.3172 -0.3192 -0.3140 -0.3140  -0.3300
RMA2 00067 00067 00068 00067 00067 00067 00068 00068 00068 00067  0.0067  0.0068
log(DIS) -0.1630 -0.1639  -0.1605 -0.1630 -0.1630  -0.1630  -0.1601  -0.1605 -0.1601  -0.1630  -0.1630  -0.1658
log(RAD) 00741 00743 00755 00741 00741 00741 00759 00755 00759 00741 00741  0.0766
TAX  -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003  -0.0003
PTRATIO -0.0135 -0.0134 -0.0138 -0.0135 -0.0135 -0.0135 -0.0139  -0.0138 -0.0139  -0.0135 -0.0135  -0.0145
B 00003  0.0003 00003 00003 00003  0.0003 00003 00003 00003  0.0003 00003  0.0003
log(LSTAT) -0.2722 -0.2720 -0.2690 -0.2722  -0.2722 -0.2722 -0.2686 -0.2690 -0.2686 -0.2722  -0.2722  -0.2750
néwo.4 04426  0.4422 04426 04426  0.4426 04426  0.4426
n6wo.8 0.4397 0.4397
n6wo.9 0.4375 0.4375 0.5148
niw2.2 -0.0931

7. Conclusions and Possible Extensions

This paper considered the choice of spatial weighting matrix
in a spatial Durbin model framework. Building upon the
transformation approach of Kostov (2010) we propose a
two-step selection approach with a screening step reducing
the number of candidate spatial weighting matrices and
estimation step selecting the final model. In an empirical
application of the proposed methodology a range of different
combinations of screening and estimation methods are found
to produce similar results. We also demonstrate the ability of
the proposed methodology to approximate and provide
indications to what the ‘true’ spatial weighting matrix could
be even when it is not amongst the considered alternatives.
The similarity in results obtained using different methods
suggests that their relative computational costs could be
primary reasons for their choice. Note however that there are
some numerical and algorithmic issues still to be resolved that
can affect the comparative performance of different methods,
which is to be subject of further research. Another unresolved
issue refers to the presence of heteroscedacticity in the
estimated models, something that may prompt search of more
robust alternatives of the proposed methods. Finally, another
important issue that we have not discussed here is this of
functional form. Since non-parametric estimators are still
consistent, although inefficient under the presence of (ignored)
spatial dependence, the proposed methods could still be
applied to non-parametrically filtered data, although the
question of potential interplay of simultaneous selection of

main variables (in non-parametric setup) and spatial
weighting matrices is something that would require much
more careful consideration.
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